(c)2001-2005 Mineral Data Publishing, version 1

Crystal Data: Monoclinic (synthetic). *Point Group:* 2/m. As fine-grained crusts of pseudohexagonal plates or as laths; massive, in blebs and films.

Physical Properties: Hardness = "Soft". D(meas.) = 2.27(3) D(calc.) = 2.31 (synthetic). Partially soluble in H₂O.

Optical Properties: Transparent. Color: Pale blue to greenish blue.

Optical Class: Biaxial (+). Pleochroism: X = nearly colorless; Y = pale blue; Z = blue. Orientation: $Z \perp$ flattening; $Y \parallel$ elongation; $Z \wedge c$ very small. $\alpha = 1.483$ $\beta = 1.530$ $\gamma = 1.576$ 2V(meas.) = Large.

Cell Data: Space Group: $P2_1/n$ (synthetic). a = 6.696(2) b = 6.101(2) c = 13.779(3) $\beta = 91.83(2)^{\circ}$ Z = 4

X-ray Powder Pattern: Patina on Egyptian bronze figure. 6.92 (10), 4.17 (8), 3.69 (7), 7.76 (4), 2.85 (4), 2.99 (3), 2.88 (3)

Chemistry:

	(1)	(2)
CO_2	30.5	31.04
SiO_2	0.4	
R_2O_3	0.6	
CuO	29.2	28.05
Na_2O	19.7	21.85
${\rm H_2O}$	19.0	19.06
Total	99.4	100.00

(1) Patina on ancient Egyptian bronze figure; CO_2 determined volumetrically, $\mathrm{H}_2\mathrm{O}$ by the Penfield method; corresponds to $\mathrm{Na}_{1.74}\mathrm{Cu}_{1.00}(\mathrm{CO}_3)_{1.89} \bullet 2.88\mathrm{H}_2\mathrm{O}$. (2) $\mathrm{Na}_2\mathrm{Cu}(\mathrm{CO}_3)_2 \bullet 3\mathrm{H}_2\mathrm{O}$.

Occurrence: A component of patina on bronze artifacts, apparently characteristic of arid weathering environments (Egypt); an uncommon secondary mineral in the oxidation zone of polymetallic deposits.

Association: Cuprite, atacamite (patina on bronze artifact); paratacamite, gypsum, brochantite, malachite, azurite, epsomite, nickeloan magnesite, glaukosphaerite, takovite, georgeite, carrboydite (Carr Boyd Rocks mine, Australia).

Distribution: Initially characterized on several ancient Egyptian artifacts. From the Carr Boyd Rocks nickel mine, Yerilla district, 80 km north-northeast of Kalgoorlie, Western Australia. At the Glückrad mine, near Oberschulenberg, Harz Mountains, Germany. In the USA, from the Deremo-Snyder mine, San Miguel Co., Colorado, and at the White Pine mine, Ontonagon Co., Michigan.

Name: From the Greek *chalcos*, for *copper*, and *natron*, the modern name for naturally occurring sodium carbonate.

Type Material: Canadian Geological Survey, Ottawa, Canada, 17254; Fogg Museum 1943.1121.6; Harvard University, Cambridge, 105297; National Museum of Natural History, Washington, D.C., USA, 112695.

References: (1) Frondel, C. and R.J. Gettens (1955) Chalconatronite, a new mineral from Egypt. Science, 122, 75–76. (2) (1955) Amer. Mineral., 40, 943 (abs. ref. 1). (3) Gettens, R.J. and C. Frondel (1955) Chalconatronite: an alteration product on some ancient Egyptian bronzes. Studies in Conservation, 2(2), 64–75. (4) Mosset, A., J.-J. Bonnet, and J. Galy (1978) Structure cristalline de la chalconatronite synthétique: Na₂Cu(CO₃)₂.3H₂O. Zeits. Krist., 148, 165–177 (in French with English abs.).

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Mineral Data Publishing.