©2001-2005 Mineral Data Publishing, version 1

Crystal Data: Tetragonal. Point Group: 4/m 2/m 2/m. Crystals, to 10 cm, dipyramidal {111}, with {001} and {114}; commonly granular, massive. Twinning: On {011}.

Physical Properties: Cleavage: $\{001\}$, perfect; $\{011\}$, distinct. Hardness = 3.5-4 D(meas.) = 2.994-3.005 D(calc.) = 2.998

Optical Properties: Transparent to translucent. *Color:* Nearly colorless to snow-white; colorless in transmitted light. *Luster:* Vitreous, pearly on the basal cleavage. *Optical Class:* Uniaxial (–). $\omega = 1.3486 \quad \epsilon = 1.3424$

Cell Data: Space Group: P4/mnc. a = 7.00-7.01 c = 10.39-10.41 Z = 2

X-ray Powder Pattern: Synthetic; composite pattern. (ICDD 2-749). 2.91 (100), 5.18 (80), 2.32 (70), 1.99 (70), 1.79 (70), 1.75 (70), 1.55 (70)

Chemistry:		(1)	(2)	(3)
	Na	24.97	24.79	24.89
	Al	17.66	17.54	17.53
	\mathbf{F}	57.30	57.81	57.58
	H_2O^-		0.23	
	Total	99.93	100.37	100.00

(1) Miass, Russia. (2) Ivigtut, Greenland. (3) $Na_5Al_3F_{14}$.

Occurrence: In some granite pegmatites.

Association: Topaz, phenakite, fluorite, cryolithionite, thomsenolite (Miass, Russia); cryolite, elpasolite, pachnolite, thomsenolite, ralstonite (Amelia, Virginia, USA).

Distribution: At Miass, Ilmen Mountains, Southern Ural Mountains, Russia. From the Ivigtut cryolite deposit, southwestern Greenland. In the USA, in the Morefield pegmatite mine, Amelia, Amelia Co., Virginia.

Name: From the Greek for snow and stone, as compared to cryolite, ice-stone.

Type Material: Vernadsky State Geological Museum, Moscow, Russia, 18270, 18271.

References: (1) Palache, C., H. Berman, and C. Frondel (1951) Dana's system of mineralogy, (7th edition), v. II, 123–124. (2) Jacobini, C., A. Leble, and J.J. Rosseau (1981) Détermination précise de la structure de la chiolite $Na_5Al_3F_{14}$ et étude par R.P.E. de $Na_5Al_3F_{14}$:Cr³⁺. J. Solid State Chem., 36, 297–304 (in French with English abs.). (3) Dirken, P.J., J.B.H. Jansen, and R.D. Schuiling (1992) Influence of octahedral polymerization on ²³Na and ²⁷Al MAS NMR in alkali fluoroaluminates. Amer. Mineral., 77, 718–724.