Clinochrysotile

©2001 Mineral Data Publishing, version 1.2

Crystal Data: Monoclinic or triclinic. *Point Group:* n.d. Asbestiform, fibrous along [100], curled to cylindrical; also bladed, massive.

Physical Properties: Hardness = 2.5 D(meas.) = 2.53(1) D(calc.) = 2.61

Optical Properties: Semitransparent. *Color:* White, pale green to dark green. *Luster:* Silky in fibrous aggregates.

Optical Class: Biaxial (-). $\alpha = 1.569(2)$ $\beta = [1.569]$ $\gamma = 1.570(2)$ $2V(\text{meas.}) = \sim 42^{\circ}$

Cell Data: Space Group: n.d. a = 5.3129(9) b = 9.120(3) c = 14.637(2) $\beta = 93^{\circ}9.8(6)'$ Z = 4

X-ray Powder Pattern: Butler Estate chrome mine, California, USA. 7.31 (100), 3.65 (70), 4.57 (50), 1.535 (50), 2.270 (30), 2.205 (30), 2.092 (30)

Chemistry:		(1)	(2)		(1)	(2)
	SiO_2	42.2	43.37	MnO	0.06	
	TiO_2	0.002		NiO	0.04	
	Al_2O_3	0.66		MgO	41.7	43.63
	$\overline{\text{Fe}_2^{-}O_3^{-}}$	1.2		CaO	0.01	
	Cr_2O_3	0.02		H_2O^+	13.3	13.00
	FeŌ	0.09		H_2O^-	0.95	
				Total	100.23	100.00

(1) Joe No. 5 pit, California, USA. (2) $Mg_3Si_2O_5(OH)_4$.

Polymorphism & Series: Polymorphous with antigorite, orthochrysotile, lizardite, and parachrysotile; may also be termed chrysotile- $2M_{c1}$.

Mineral Group: Kaolinite-serpentine group.

Occurrence: Intermixed with orthochrysotile in veinlets cutting serpentinite.

Association: Orthochrysotile, lizardite, corundum.

Distribution: Undoubtedly of common occurrence in asbestos deposits, but requires careful characterization for confirmation, which has been accomplished at only a few localities, such as: in the USA, from the Butler Estate chrome mine, Fresno Co., and the Joe No. 5 pit, New Idria, San Benito Co., California; in the Belvidere Mountain quarries, Lowell, Orleans Co., Vermont; and from the Salt River Canyon, near Globe, Gila Co., Arizona. At Thetford Mines, Quebec, Canada. From Quilla, Charsadda Tehsil, Pakistan. In Australia, from Woodsreef, New South Wales.

Name: Chrysotile from the Greek for *golden* and *fiber*; *clino* in reference to the mineral's crystallization in inclined axis crystal systems.

Type Material: n.d.

References: (1) Deer, W.A., R.A. Howie, and J. Zussman (1963) Rock-forming minerals,
v. 3, sheet silicates, 170–190. (2) Whittaker, E.J.W. (1956) The structure of chrysotile.
II. Clino-chrysotile. Acta Cryst., 9, 855–861. (3) Page, N.J. and R.G. Coleman (1967)
Serpentine-mineral analyses and physical properties. U.S. Geol. Sur. Prof. Paper 575-B,
B103–B107. (4) Wicks, F.J. and E.J.W. Whittaker (1975) A reappraisal of the structures of the serpentine minerals. Can. Mineral., 13, 227–243. (5) Middleton, A.P. and E.J.W. Whittaker (1976) The structure of Povlen-type chrysotile. Can. Mineral., 14, 301–306. (6) Yada, K. (1979)
Microstructures of chrysotile and antigorite by high-resolution electron microscopy. Can. Mineral., 17, 679–691. (7) Bayliss, P. (1981) Unit cell data of serpentine minerals: structures and petrology.
In: S.W. Bailey, Ed., Hydrous phyllosilicates. Rev. Mineral. 19, MSA, 91–167.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Mineral Data Publishing.