Chemist

©2001-2005 Mineral Data Publishing, version 1

Crystal Data: Monoclinic. Point Group: 2/m, m, or 2, or Triclinic. Point Group: $\overline{1}$ or 1. As fibrous needles, generally multiple crystals, elongated and striated $\parallel [010]$, to 2 mm;; typically in aggregates resembling "steel wool".

Physical Properties: Hardness = 2.5 VHN = 226–279 (15 g load). D(meas.) = 5.68 D(calc.) = 5.51

Optical Properties: Opaque. *Color:* Lead-gray; in polished section, white with a greenish tint, with blood-red internal reflections in oil. *Streak:* Black. *Luster:* Metallic. *Anisotropism:* Distinct to strong, in greenish gray.

 $\begin{array}{l} R_1-R_2: \ (400) \ 44.0-46.6, \ (420) \ 42.3-45.8, \ (440) \ 40.8-45.1, \ (460) \ 39.6-44.5, \ (480) \ 39.2-44.1, \ (500) \ 39.1-44.0, \ (520) \ 39.1-44.0, \ (540) \ 39.1-43.9, \ (560) \ 38.9-43.0, \ (580) \ 38.4-42.0, \ (600) \ 37.9-41.3, \ (620) \ 37.3-40.6, \ (640) \ 36.8-39.9, \ (660) \ 36.2-39.1, \ (680) \ 35.7-38.1, \ (700) \ 35.3-37.1 \end{array}$

Cell Data: Space Group: P2/m, Pm, or P2, with a = 19.041 b = 8.226 c = 17.327 $\beta = 96^{\circ}18'$ Z = 1, or Space Group: $P\overline{1}$ or P1, with a = 17.33 b = 4.11 c = 19.05 $\alpha = 90.0^{\circ}$ $\beta = 96.3^{\circ}$ $\gamma = 90.4^{\circ}$ Z = 2

X-ray Powder Pattern: Saint-Pons, France. 2.795 (100), 2.069 (92), 3.393 (74), 3.371 (72), 3.713 (51), 2.843 (47), 3.792 (45)

ry:		(1)	(2)	(3)	(4)
	Pb	48.9	48.8	48.7	48.61
	Fe	0.04			
	\mathbf{Sb}	29.1	30.4	31.3	31.29
	As	1.0			
	\mathbf{S}	19.9	19.5	19.7	19.70
	Cl	0.19	0.23	0.4	0.40
	Total	99.13	98.93	100.1	100.00

(1) Madoc, Canada; by electron microprobe, corresponds to $Pb_{20.9}(Sb_{21.2}As_{1.2})_{\Sigma=22.4}$ S_{55.0}Cl_{0.5}. (2) Wolfsberg, Germany; by electron microprobe, corresponds to $Pb_{21.0}Sb_{22.6}$ S_{55.0}Cl_{0.6}. (3) Saint-Pons, France; by electron microprobe; corresponds to $Pb_{21.0}Sb_{23.0}S_{55.0}Cl_{1.0}$. (4) $Pb_{21}Sb_{23}S_{55}Cl$.

Occurrence: In hydrothermal veins with other sulfides and lead sulfosalt minerals.

Association: Jamesonite (Northwest Territories and Ontario, Canada); robinsonite (Pershing Co., Nevada, USA); bournonite, boulangerite, zinkenite, chalcostibite (Saint-Pons, France).

Distribution: In Canada, in the Brock zone of the Giant property, Yellowknife, Northwest Territories [TL]; and from Madoc, Ontario [TL]. In the USA, at the Red Bird mercury mine, Rye Patch district, Pershing Co., Nevada [TL]. In Germany, in the Harz Mountains, from Wolfsberg [TL], St. Andreasberg, and Harzburg. In France, at Saint-Pons, Alpes-de-Haute-Provence.

Name: To honor the Canadian mineralogist, Alexander Stewart Dadson (1906–1958), active in development of the Yellowknife gold deposits.

Type Material: Canadian Geological Survey, Ottawa; Royal Ontario Museum, Toronto, Canada, M30905; National School of Mines, Paris, France; The Natural History Museum, London, England, 1972,11; National Museum of Natural History, Washington, D.C., USA, 123240.

References: (1) Jambor, J.L. (1969) Dadsonite (minerals Q and QM), a new lead sulphantimonide. Mineral. Mag., 37, 437–441. (2) (1970) Amer. Mineral., 55, 1445 (abs. ref. 1). (3) Cervelle, B.D., F.P. Cesbron, and M.-C. Sichére (1979) La chalcostibite et la dadsonite de Saint-Pons, Alpes de Haute Provence, France. Can. Mineral., 17, 601–605 (in French with English abs.). (4) Jambor, J.L., J.H.G. Laflamme, and D.A. Walker (1982) A re-examination of the Madoc sulfosalts. Mineral. Record, 13, 93–100. (5) Makovicky, E. and W.G. Mumme (1984) The crystal structure of izoklakeite, dadsonite and jaskolskiite. Acta Cryst., A40, supplement, C-246. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Mineral Data Publishing.