(c)2001-2005 Mineral Data Publishing, version 1

Crystal Data: Triclinic, pseudohexagonal. *Point Group:* $\overline{1}$ or 1. Crystals are platy, pseudohexagonal, flattened on $\{001\}$, corroded or skeletal, to 0.05 mm; typically granular. *Twinning:* Common, lamellar.

Physical Properties: Cleavage: $\{001\}$, distinct. Fracture: Uneven. Hardness = n.d. D(meas.) = 1.83 (synthetic). D(calc.) = 1.82 Soluble in H_2O .

Optical Properties: Transparent. Color: Colorless, white.

Optical Class: Biaxial (–). Orientation: $Z=b; X \wedge c=78^{\circ}$. $\alpha=1.501$ $\beta=1.516$ $\gamma=1.525$ $2V(\text{meas.})=75^{\circ}$

Cell Data: Space Group: $P\overline{1}$ or P1 (synthetic). a = 5.87(1) b = 10.17(3) c = 8.27(1) $\alpha = 101.1(4)^{\circ}$ $\beta = 111.1(1)^{\circ}$ $\gamma = 89.9(2)^{\circ}$ Z = 2

X-ray Powder Pattern: Synthetic.

4.95 (100), 4.98 (85), 3.77 (80), 3.39 (75), 2.932 (50), 3.36 (45), 4.65 (35)

Chemistry:

	(1)	(2)
SO_3	63.92	64.76
$(NH_4)_2O$	20.19	20.67
$\mathrm{H_2O}$	[15.89]	14.57
Total	[100.00]	100.00

(1) Kladno, Czech Republic. (2) $H(NH_4)_3(SO_4)_2$.

Occurrence: A rare secondary mineral, formed from burning coal (Czech Republic); deposited from hot springs (The Geysers, California, USA).

Association: Sulfur (Letovice, Czech Republic); mascagnite, boussingaultite (The Geysers, California, USA).

Distribution: In the Czech Republic, from Písěcná, near Letovice; at Libušin, near Kladno; and from Radvanice. At Ormosbánya, Hungary. Found at The Geysers, Sonoma Co., California, USA.

Name: For Letovice, Czech Republic, the locality first noted for the mineral.

Type Material: Moravian Museum, Brno, Czech Republic, A6110.

References: (1) Palache, C., H. Berman, and C. Frondel (1951) Dana's system of mineralogy, (7th edition), v. II, 397. (2) Davis, B.L. and L.R. Johnson (1984) The true unit cell of ammonium hydrogen sulfate, $(NH_4)_3H(SO_4)_2$. J. Appl. Cryst., 17, 331–333.