© 2001-2005 Mineral Data Publishing, version 1

Crystal Data: Monoclinic. *Point Group:* 2/m. Prismatic crystals are flattened on $\{101\}$, elongated along [101], showing $\{101\}$, $\{010\}$, and $\{10\overline{1}\}$, to 1 mm; in aggregates of crystals.

Physical Properties: Cleavage: On $\{101\}$, perfect. Fracture: Irregular. Tenacity: Brittle. Hardness = n.d. D(meas.) = n.d. D(calc.) = 2.181 Soluble in H_2O .

Optical Properties: Transparent. Color: Colorless. Streak: White. Optical Class: Biaxial (+). Orientation: Y = b; $X \simeq c$; $Z \wedge c = 19^{\circ}$. $\alpha = 1.48(1)$ $\beta = 1.49(1)$ $\gamma = 1.55(1)$ $2V(\text{meas.}) = 7(3)^{\circ}$

Cell Data: Space Group: P2/n. a = 10.289(1) b = 9.234(1) c = 11.015(1) $\beta = 108.50(1)^{\circ}$ Z = 2

X-ray Powder Pattern: Alum Cave Bluff, Tennessee, USA. 9.3 (100), 6.28 (90), 4.89 (60), 4.09 (50), 5.20 (40), 3.700 (30), 3.447 (30)

Chemistry:		(1)		(1)
	SO_3	24.58	Nd_2O_3	5.94
	C_2O_3	[11.05]	Sm_2O_3	3.21
	$\overline{\mathrm{Al}_2\mathrm{O}_3}$	7.83	Eu_2O_3	0.54
	Y_2O_3	5.72	Gd_2O_3	2.23
	La_2O_3	0.50	Dy_2O_3	1.15
	Ce_2O_3	3.02	$\mathrm{Er_2O_3}$	0.29
	Pr_2O_3	0.76	$\mathrm{H_2O}$	[33.18]
			Total	[100.00]

 $\begin{array}{l} \text{(1) Alum Cave Bluff, Tennessee, USA; by electron microprobe, C_2O_3 and H_2O calculated from stoichiometry; corresponding to $(Y_{0.33}Nd_{0.23}Ce_{0.12}Sm_{0.12}Gd_{0.08}Dy_{0.04}Pr_{0.03}La_{0.02}Eu_{0.02}Er_{0.01})_{\Sigma=1.00}Al_{1.00}(SO_4)_{2.00}(C_{2.00}O_4) \bullet 12.00H_2O. \end{array}$

Occurrence: Formed by evaporative precipitation during weathering of pyritiferous phyllite, the rare earths probably derived from monazite and xenotime.

Association: Zugshunstite-(Ce), epsomite, halotrichite.

Distribution: From Alum Cave Bluff, Great Smoky Mountains National Park, Tennessee, USA.

Name: To honor Dr. Alfred Abraham Levinson (1927–), mineralogist, University of Calgary, Calgary, Canada, who originated the nomenclature system in use for rare-earth-bearing minerals.

Type Material: University of Michigan, Ann Arbor, Michigan; National Museum of Natural History, Washington, D.C., USA.

References: (1) Rouse, R.C., D.R. Peacor, E.J. Essene, T.D. Coskren, and R.J. Lauf (2001) The new minerals levinsonite-(Y) $[(Y, Nd, Ce)Al(SO_4)_2(C_2O_4) \cdot 12H_2O]$ and zugshunstite-(Ce) $[(Ce, Nd, La)Al(SO_4)_2(C_2O_4) \cdot 12H_2O]$: coexisting oxalates with different structures and differentiation of LREE and HREE. Geochim. Cosmochim. Acta, 65, 1101–1115. (2) (2001) Amer. Mineral., 86, 1535–1536 (abs. ref. 1).