(c)2001-2005 Mineral Data Publishing, version 1

Crystal Data: Monoclinic. Point Group: 2/m. Steep pyramidal crystals, with large $\{111\}$, truncated by $\{001\}$, $\{110\}$, many smaller forms, to 1 cm; commonly cross-vein fibrous.

Physical Properties: Cleavage: On $\{001\}$, perfect. Hardness = 4.5 D(meas.) = 3.49(2) D(calc.) = 3.54 Slightly soluble in H_2O .

Optical Properties: Transparent to translucent. *Color:* Bright emerald-green. *Streak:* Pale greenish. *Luster:* Vitreous.

Optical Class: Biaxial (+). Orientation: $Y = b; X \land c = -12^{\circ}$. Dispersion: r < v, strong, slightly inclined. $\alpha = 1.649$ $\beta = 1.655$ $\gamma = 1.714$ $2V(\text{meas.}) = 36^{\circ}48'$

Cell Data: Space Group: C2/m (synthetic). a = 8.809(1) b = 6.187(1) c = 7.509(1) $\beta = 118.74(1)^{\circ}$ Z = 2

X-ray Powder Pattern: Chuquicamata, Chile. (ICDD 19-1189). 2.797 (10), 6.57 (8), 3.44 (8), 2.522 (8), 3.20 (7), 4.82 (6), 2.302 (6)

Chemistry:

	(1)	(2)
SO_3	42.42	43.01
CuO	42.01	42.74
Na_2O	7.98	6.99
$\rm H_2O$	7.71	7.26
Total	100.12	100.00

(1) Chuquicamata, Chile. (2) $NaCu_2(SO_4)_2(OH) \cdot H_2O$.

Mineral Group: Tsumcorite group.

Occurrence: A rare mineral typically formed in an arid climate in the oxidized zone of copper deposits.

Association: Kröhnkite, antlerite, brochantite, chalcanthite, blödite, atacamite, gypsum (Chuquicamata, Chile); kröhnkite, brochantite (Capo Calamita, Italy).

Distribution: In Chile, from Chuquicamata, at the Fortuna mine, east of Baquedano, and from the Santiagina mine, Sierra Gorda, southwest of Calama, Antofagasta. At Capo Calamita, Elba, Italy.

Name: From the Latin for sodium, *natrium*, and the Greek for copper, *chalkos*, in the composition.

Type Material: Harvard University, Cambridge, Massachusetts, USA, 97537, 97538.

References: (1) Palache, C., H. Berman, and C. Frondel (1951) Dana's system of mineralogy, (7th edition), v. II, 602–603. (2) Rumanova, I.M. and G.F. Volodina (1958) The crystal structure of natrochalcite, NaCu₂OH(SO₄)₂ •H₂O = Na(SO₄)₂(Cu₂OH •H₂O). Doklady Acad. Nauk SSSR, 123, 78–81 (in Russian). (3) Giester, G. (1989) The crystal structures of Ag⁺Cu₂(OH)(SO₄)₂ •H₂O and Me⁺Cu₂(OH)(SeO₄)₂ •H₂O [Me⁺=Ag, Tl, NH₄], four new representatives of the natrochalcite type, with a note on natural natrochalcite. Zeits. Krist., 187, 239–247. (4) Beran, A., G. Giester, and E. Libowitzky (1997) The hydrogen bond system in natrochalcite-type compounds – an FTIR spectroscopic study of the H₃O₂⁻ unit. Mineral. Petrol., 61, 223–235.