Crystal Data: Triclinic. [*Point Group*: 1 or \overline{I}] (by analogy to innelite). As lath-shaped, split, and distorted crystals, to 6 mm, exhibiting prominent {010}, striations parallel to elongation; typically as bunch-, sheaf-, and rosettelike aggregates.

Physical Properties: *Cleavage*: Perfect on {010}, good on {100}. *Tenacity*: Brittle. *Fracture*: Stepped. Hardness = 4.5-5. D(meas.) = 3.82(5) D(calc.) = 3.92

Optical Properties: Transparent. *Color*: Yellow–brown, honey, occasionally brown. *Streak*: Pale yellow. *Luster*: Vitreous, greasy on broken surfaces. *Optical Class*: Biaxial (+). $\alpha = 1.730(5)$ $\beta = 1.745(3)$ $\gamma = 1.764(3)$ 2V(meas.) = ~ 90° 2V(calc) = 84° *Orientation*: $Z^{\circ}c \sim 5^{\circ}$.

Cell Data: [Space Group: P1 or P1] (by analogy to innelite). a = 5.38(2) b = 7.10(2)c = 14.76(5) $\alpha = 99.00(7)^{\circ}$ $\beta = 94.94(6)^{\circ}$ $\gamma = 90.14(8)^{\circ}$ Z = 1

X-ray Powder Pattern: Kovdor massif, Kola Peninsula, Russia (identical to innelite). 14.5 (100), 2.683 (90), 2.133 (80), 3.455 (40), 2.810 (40), 2.059 (40), 3.382 (35)

Chemistry:		(1)		(1)
	Na_2O	6.06	SiO_2	17.83
	K_2O	0.04	TiO_2	16.88
	CaO	0.15	Nb_2O_5	0.74
	SrO	0.99	P_2O_5	5.93
	BaO	41.60	SO_3	5.29
	MnO	1.07	F	0.14
	Fe_2O_3	1.55	<u>-O=F₂</u>	0.06
	Al_2O_3	0.27	Total	99.12

(1) Kovdor massif, Kola Peninsula, Russia; average of 14 electron microprobe analyses, absence of OH, H_2O confirmed by IR, corresponding to

 $(Ba_{3.59}Sr_{0.13}K_{0.01})_{\Sigma=3.73}(Na_{2.59}Mg_{0.21}Mn_{0.20}Ca_{0.04})_{\Sigma=3.04}(Ti_{2.80}Fe^{3+}_{0.26}Nb_{0.07})_{\Sigma=3.13}(Si_{3.93}Al_{0.07})_{\Sigma=4}O_{14})_{\Sigma=1.98}O_{1.95}O_{$

Polymorphism & Series: Forms a series with innelite.

Occurrence: A late stage mineral in a hydrothermally altered peralkaline pegmatite that crosscuts calcite carbonatite associated with an ultramafic alkaline pluton.

Association: Thompsonite-Ca, golyshevite, pectolite, cancrinite, pyroxene, CO₃-bearing fluorapatite.

Distribution: Kovdor massif, Kola Peninsula, Russia.

Name: For its chemical composition as the P-analog of innelite.

Type Material: A.E. Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, 3288/1.

References: (1) Pekov, I.V., N.V. Chukanov, I.M. Kulikova, and D.I. Belakovsky (2006) Phosphoinnelite, $Ba_4Na_3Ti_3Si_4O_{14}(PO_4, SO_4)_2(O, F)_3$, a new mineral from peralkaline pegmatites of the Kovdor massif, Kola Peninsula. Zap. Ross. Mineral. Obshch., 135(3), 52–60 (in Russian, English abstract); (2007) Geology of Ore Deposits, 49, 530–536 (in English). (2) (2009) Amer. Mineral., 94, 1081 (abs. ref. 1).