\odot 2001 Mineral Data Publishing, version 1.2

Crystal Data: Orthorhombic. Point Group: n.d. Cross-veinlet fibrous, to 1 cm; massive.

Physical Properties: Cleavage: $\{001\}$, perfect; $\{100\}$, secondary. Hardness = Soft. D(meas.) = n.d. D(calc.) = 2.6-2.7

Optical Properties: Translucent to nearly opaque. Color: White. Luster: Silky. Optical Class: Biaxial (+). Orientation: X = c; Y = b; Z = a. Dispersion: Observed. $\alpha = 1.600(2)$ $\beta = 1.601(2)$ $\gamma = 1.605(2)$ 2V(meas.) = Small.

Cell Data: Space Group: n.d. a = 11.3 b = 7.30 c = 18.0 Z = 4

X-ray Powder Pattern: Crestmore, California, USA; from 9.3 Å product of dehydrated tobermorite.

3.03 (vs), 2.33 (s), 1.83 (s), 9.3 (m), 3.59 (m), 2.78 (m), 1.66 (m)

Chemistry:

	(1)	(2)
SiO_2	35.3	51.87
TiO_2	< 0.1	
$Al_2 \bar{O}_3$	1.3	
$\mathrm{Fe}_2\mathrm{O}_3$	0.4	
MgO	1.4	
CaO	48.2	40.35
$\rm H_2O^+$	13.3	7.78
Total	[100.0]	100.00

(1) Crestmore, California, USA; recalculated to 100.0% after deduction of CaO in calcite and P_2O_5 and SO_4 in apatite. (2) $Ca_5Si_6O_{16}(OH)_2 \cdot 2H_2O$.

Occurrence: As intimate intergrowths with apatite, in veinlets cutting contact metamorphosed limestone (Crestmore, California, USA).

Association: Apatite, vesuvianite, diopside, calcite, wollastonite (Crestmore, California, USA).

Distribution: From Crestmore, Riverside Co., California, USA. At Ballycraigy, near Larne, Co. Antrim, Ireland. In the Hatrurim Formation, Israel.

Name: For the first-noted occurrence in Riverside Co., California, USA.

Type Material: National Museum of Natural History, Washington, D.C., USA, 93416.

References: (1) Eakle, A.S. (1917) Minerals associated with the crystalline limestone at Crestmore, Riverside County, California. Bull. Dept. Geol. Univ. Calif., 10(19), 327–360.
(2) Taylor, H.F.W. (1953) Crestmoreite and riversideite. Mineral. Mag., 30, 155–165.
(3) McConnell, J.D.C. (1954) The hydrated calcium silicates riversideite, tobermorite, and plombierite. Mineral. Mag., 30, 293–305. (4) Heller, L. and H.F.W. Taylor (1956) Crystallographic data for the calcium silicates. H.M. Stationary Office, London, 30–45. (5) Taylor, H.F.W. (1957) The dehydration of tobermorite. Clays and Clay Minerals, 6, 101–109. (6) Mamedov, K.S. and N.V. Belov (1958) Crystal structure of tobermorite (tobermorites). Doklady Acad. Nauk SSSR, 123, 163–165 (in Russian). (7) (1959) Chem. Abs., 53, 5030 (abs. ref. 6).