©2001-2005 Mineral Data Publishing, version 1

Crystal Data: Monoclinic. *Point Group:* 2/m, 2, or m. As irregular grains to 3 mm, intergrown within aggregates of skippenite.

Physical Properties: Fracture: Conchoidal. Hardness = n.d. VHN = 155–186, 166 average (25 g load). D(meas.) = n.d. D(calc.) = 7.82

Cell Data: Space Group: P2/m, P2, or Pm. a = 12.921(3) b = 3.997(1) c = 14.989(3) $\beta = 109.2(2)^{\circ}$ Z = 2

X-ray Powder Pattern: Otish Mountains deposit, Canada. 2.976 (10), 2.929 (10), 3.573 (9b), 2.407 (7), 2.140 (7b), 2.065 (7b), 1.484 (7)

Chemistry:

	(1)
Cu	8.06 - 9.16
Pb	14.03 - 16.39
Bi	42.69 - 46.44
Se	27.44 - 28.73
Te	0.19 - 0.53
S	3.03 - 3.47
- 1	

Total

(1) Otish Mountains deposit, Canada; by electron microprobe, ranges of 11 grains, the average of which corresponds to $\text{Cu}_{2.36}\text{Pb}_{1.26}\text{Bi}_{3.70}(\text{Se}_{6.21}\text{S}_{1.74}\text{Te}_{0.05})_{\Sigma=8.00}$.

Occurrence: In a vein-type uranium deposit with other tellurides and selenides.

Association: Skippenite, součekite, clausthalite, chalcopyrite, Au–Ag alloy.

Distribution: From the Otish Mountains uranium deposit, Quebec, Canada.

Name: For Professor David H. Watkinson, Carleton University, Ottawa, Canada.

Type Material: n.d.

References: (1) Johan, Z., P. Picot, and F. Ruhlmann (1987) The ore mineralogy of the Otish Mountains uranium deposit, Quebec: skippenite, Bi₂Se₂Te, and watkinsonite, Cu₂PbBi₄(Se, S)₈, two new mineral species. Can. Mineral., 25, 625–637. (2) (1989) Amer. Mineral., 74, 948 (abs. ref. 1).