©2001-2005 Mineral Data Publishing, version 1

Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. As prismatic to equant crystals, showing {100}, {010}, {110}, {001}, to 40μ m, typically in radial fibrous aggregates.

Physical Properties: Cleavage: On $\{010\}$, perfect. Hardness = 4 D(meas.) = 2.58 D(calc.) = 2.60

Optical Properties: Translucent. *Color:* Yellow to brownish yellow. *Streak:* Pale yellow. *Luster:* Vitreous.

Optical Class: Biaxial (-) or (+). Pleochroism: X = Y = light yellow; Z = dark yellow. Orientation: X = b; Y = a; Z = c. $\alpha = 1.637$ $\beta = 1.664$ $\gamma = 1.692$ 2V(meas.) = n.d. 2V(calc.) = 45°

Cell Data: Space Group: Pbca. a = 14.80(5) b = 18.70(5) c = 7.31(2) Z = 8

X-ray Powder Pattern: Hagendorf, Germany. 2.86 (10), 9.34 (7), 5.00 (6d), 1.98 (5), 4.67 (4), 2.58 (4), 1.96 (4d)

Chemistry:

	(1)	(2)
P_2O_5	35.5	36.04
Fe_2O_3	19.0	20.27
MnO	17.6	18.01
ZnO	2.6	
CaO	11.9	14.24
H_2O	[13.4]	11.44
Total	[100.0]	100.00

(-)

 $\langle \alpha \rangle$

(1) Hagendorf, Germany; by electron microprobe, originally given as PO₄ 47.5%, Fe 13.3%, Mn 13.6%, Zn 2.1%, Ca 8.5%, H₂O 15.0% by difference, total 100.0%, here converted to oxides, total Fe as Fe₂O₃, total Mn as MnO, $(OH)^{1-}$ determined present by IR; stated to correspond to $(Ca_{0.85}Zn_{0.13})_{\Sigma=0.98}Mn_{0.99}^{2+}Fe_{0.95}^{3+}(PO_4)_2(OH) \cdot 2.33H_2O$. (2) $CaMn^{2+}Fe^{3+}(PO_4)_2(OH) \cdot 2H_2O$.

Mineral Group: Overite group.

Occurrence: A rare secondary mineral in a complex zoned granite pegmatite.

Association: Rockbridgeite, zwieselite.

Distribution: From Hagendorf, Bavaria, Germany.

Name: To honor Wilhelm Vierling (1901–1995), Weiden, Germany, a longtime student of Hagendorf minerals.

Type Material: Institute for Mineralogy and Crystallography, Technical University, Berlin, Germany.

References: (1) Mücke, A. (1983) Wilhelmvierlingit, $(Ca, Zn)MnFe^{3+}[OH|(PO_4)_2]2H_2O$, ein neues Mineral von Hagendorf/Oberpfalz. Aufschluss, 34, 267–274 (in German). (2) (1984) Amer. Mineral., 69, 568 (abs. ref. 1).