Radio fhaek

Getting Started with Extended Color BASIC:
© 1984 Tandy Corporation, Fort Worth, Texas 76102 U.5.A.
All Rights Reserved.

Reproduction or use, without express written permission from Tandy Corporation, of any
portion of this manual is prohibited. While reasonable efforts have been taken in the prep-
aration of this manual to assure its accuracy, Tandy Corporation assumes no liability re-
sulting from any errors or omissions in this manual, or from the use of the information
contained herein.

TRS-80 Extended Color BASIC System Software:
© 1984 Tandy Corporation and Microsoft.
All Rights Reserved.

The system software in the Color Computer is retained in a read-only memory (ROM) for-
mat. All portions of this system software, whether in the ROM format or other source
code form format, and the ROM circuitry, are copyrighted and are the proprietary and
trade secret information of Tandy Corporation and Microsoft. Use, reproduction, or publi-
cation of any portion of this material without the prior written authorization by Tandy Cor-
poration is strictly prohibited.

10987654321

To All New Customers . . .

If you don’t know a thing about computers, relax — this book’s for you! It
has you “‘program’’ your computer using its own language — Extended
Color BASIC. You'll start a little crazy by:

Composing music . Playing games
Conducting light shows . Painting pictures
If you're straight business, be patient. Having fun’s the fastest way to learn.

So spend a few hours with your computer. Type whatever you want. Play
with it. Be bold and strange. In other words . . . feel at ease! You have an
amazing tool to command.

And to All Upgrading Customers . . .

Welcome back to the Color BASIC family! Let us introduce youto . . . slight
drum roll, please ... Extended Color BASIC. It has all the features of
non-Extended Color BASIC plus much more.

For example, with Extended Color BASIC you can:

. Draw a circle e Edit a line
B Paint a house s Square a root
Cool off with a cube . Play a symphony

And even try a triangle!

If you've read Getting Started with Color BASIC, you can skip half this -
book:

Skip Section | except for Chapter 9. Chapter 9 shows how to use the
Extended Color BASIC “’Editor”” — a great time-saver in typing prog-
rams.

. Read Section 1. You'll learn to use the most exciting features of
Extended Color BASIC — high-resolution graphics and music.

. Skip Section Ill.

. Read Section IV. This shows how to use the rest of Extended Color
BASIC’s expanded features.

This Is How to Start. ..

Connect your computer by referring to your Introducing Your Color Com-
puter 2 or Introducing Your Deluxe Color Computer.

Then power up your computer:
1. Turn on your television set
2. Select Channel 3 or 4 on the television set.
3. Set the antenna switch to COMPUTER.
4

Turn on the computer. The POWER button is on the left rear of your
keyboard (when you're facing the front).

This message appears on your screen:

EXTENDED COLOR BASIC wv.r.
© 1980 TANDY
Ok

(v.r. is two numbers specifying which version and release you have.)
If you don’t get this message:

. Turn the computer on and off aga.in.

. Adjust the brightness and contrast on your television set.

. Check all the connections.

If you still don’t get this message, refer to ““Troubleshooting and Mainte-
nance” in Introducing Your Color Computer 2 or Introducing Your Deluxe
Color Computer.

Once you do get the above message, you're ready to start.

How Do You Talk to a Computer?

In this book, you’ll learn how to talk to your computer. That's all program-
ming is, by the way. Once you learn how to talk to your computer, you can
tell it to do whatever you want. (Well, almost.)

Your computer understands a language called Extended Color BASIC. This
is an enhanced form of BASIC — Beginners All-Purpose Symbolic Instruc-
tion Code. There are lots of computer languages. Extended Color BASIC
just happens to be the one your computer understands.

We'll introduce BASIC words in the order that they’re easiest to learn.
When you get midway in the book, you may forget what a word means. If
this happens, simply look it up in your Quick Reference Card.

Chapter 1

Chapter 2

Chapter 3

Chapter 4
Chapter 5
Chapter 6
Chapter 7
‘ Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12

Chapter 13

CONTENTS

Section | THE BASICS

Meet your Computer,
PRINT SOUND CLS

Your Computer Never Forgets
(...unlessyouturnitoff ..) ...t
Strings Variables

See How:Easy IL1s? i sos svvdmsmmmebne wa ¢
NEW INPUT GOTO RUN PRINT, PRINT;
LIST IF/THEN

Countthe Beat s csieng wah @e o s innnis
FOR...TO...STEP NEXT

Watchithe Cloek v:sisvranes sed ssuamimmmas i
cLs Nested Loops

Dectsions; DeCISIoNs: s seres 253 Sevarrmisies &
IF THEN END

Gamesof ChanGe cieiis s Fos dey@aEarses ¥
RND PRINT(@

REAQING: 1o woe wopsimimeninninnsa B85 7 SRAeRERIAS:
DATA READ RESTORE INT CLEAR

WEIEINE: 1 somne mirin wmmmmnm s M a5 608 S SEES
EDIT DEL RENUM

ATTERIEIIG ive siane misor somimimmsdichss Siiss S5k CRAEY
GOSUB RETURN REM

Words, Words; WOrds....c..omesiis i fiiesee
LEN LEFT$ RIGHT$ MID$

APOBOUIZ .nvr o v vnsmas i sl 585 MG
INKEY$ VAL

MOLEBASIES sovve corie roene soes simsie s 35 008 R
STOP SGN CONT ABS MEM STR$ AND OR

19

24

Section Il SIGHTS AND SOUNDS

Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 19
Chapter 20
Chapter 21
Chapter 22
Chapter 23

Chapter 24

Let's GettothePointcoviviinivinnnns. 85
PSET PRESET PPOINT

OIS THAELIHE . s wmememammsmimms snummmnasms 89
LINE COLOR

The: SHVEr SCTEEN . smsm s v 95
SCREEN PCLS

Minding Your PModes 98
PMODE

Finding the RightPage 102
PCLEAR PMODE PCOPY

CoinginCircles.............. S S 107
CIRCLE

The Big BrUShe@If oocinomanmn sommmnssmsuassim-a 112
PAINT

Draw the Line Somewhere..................... 115
DRAW .

Get and Put: The Display That Went Array 123
GET PUT

ANewKindof Point.......................... 127
SET RESET JOYSTK PEEK

Play It Again, TRS-80coiiivunnenn. 133
PLAY

Section Il GETTING DOWN TO BUSINESS

Chapter 25
Chapter 26
Chapter 27

Chapter 28
Chapter 29

TAPING eoamesoies 15 S08 S5 e s s, sratstmssace 145
OPEN CLOSE PRINT#-1 INPUT#-1 EOF

Managing Numbers 150
DIM Arrays

ManagingWords, 155
LLIST PRINT#-2 String Arrays

SOHIRE wssims von S5 sy S5 1 S et o i 159
Analyzing

Multidimensional Arrays 162

Section IV BACK TO BASICS

Chapter 30 The Numbers Gameccoiiinieinnnn. 171
SQR SIN COS TAN ATN LOG EXP FIX DEF FN

Chapter 31 It Don’t Mean a Thing
If It Aint Got That Stringt 180
STRINGS INSTR MID$

Chapter 32 In One Door and Qut the Other................ 186
LINE INPUT PRINT USING POS

Chapter 33 A Little Byte of Everything 193

LET TRON TROFF TIMER HEX$

Chapter 34 Using Machine-Language Subroutines 197
USRN DEF USRN VARPTR Memory Map

Section V ODDS AND ENDS

Suggested Answers to Do-It-Yourself Programs 207
Sample Programst 226
ASCIl Character Codesoiuniiii e 241
Graphics Screen Worksheet 244
SET/RESETWorksheet 247
PRINT@ Wortksheet : u:vuwmmn s don sedvnrassmmesans oo voiais 248
Extended Color BASIC Colors vc vuw v s vmvmmmvnisn sevsuas 249
Extended Color BASIC Error Messages.ovoeiiienineennn.. 250
Mathematical Formulas 252
Derived FUNCHONSottt 253
Color Computer Line Printer Variables 255
RONROUHNES 5 scssisin sim ivm 560 sia vol sl i iis vis Siiiils 257
BASIE SUDTMEEY eaimasmb s e 5vb i ies s atemys o Smis st 260

SECTION 1

THE BASICS

In this section you’ll learn how to program. Before you start, though, put
yourself in the right frame of mind . . .

Don’t try to do everything the “correct” way. Don't try to understand
everything. Above all, please don’t take-our word for anything!

Do have fun with your Color Computer. Try out your own ideas. Prove us
wrong (if you can). Type anything and everything that comes to mind.

Ready? Turn the page and begin.

CHAPTER 1

MEET YOUR COMPUTER

Have you connected and turned on your computer? Are you ready to give
it a first workout?

This chapter and the next introduce you to your computer—the way it
thinks, some of its talents, and even a couple of its quirks. By the time you
reach Chapter 3, you'll be ready to program . .. promise!

Type whatever you want. Then press the (ENTER) key. Don’t worry about
anything but the last line of type on your screen. It says:

OK

OK is the computer’s “prompt.”” It's telling you, “OK, enough foolishness
... as soon as you are ready . .."” (It patiently waits for your command.)
You're the master—you tell the computer to do whatever you wish.

Give the computer your first command. Type this exactly as it is below:
PRINT "HI+ I‘M YOUR COLOR COMPUTER™

When you reach the right side of your screen, keep typing. The last part of
the message appears on the next line.

Now check your line. Did you put the quotation marks where we have
them? If you made a mistake, no problem. Simply press the (=) key and the
last character you typed disappears. Press it again and the next to the last
disappears (. .. and so on and so on . . .).

| the same time.

m—

b2
k|)

S ——

_AH Fet-t-ér;_ybu type should be

BLACK with a GREEN
BACKGROUND. If they're
reversed (green with a black
background), press the

(SHIFT) and () (zero) keys at [

L |

13

See the blinking light?
Wherever you see it, you can
type something.

14

Ready? This should be on your screen:

OK
PRINT "HI+ I‘M ¥YOUR COLOR COMPUT
ERII

Press the key and watch. Your screen should look like this:

OK

PRINT "HI+ I‘M YOUR COLOR COMPUT
ERII

HI+ I'MYOUR COLOR COMPUTER

oK

Your computer just obeyed you by printing the message you have in
quotes. Have it print another message. Type:

PRINT "2"

Press (ENTER). The computer again obeys you and prints your next
message:

2

Try another one:
PRINT "2 + 2"

The computer obeys you by printing:
2+ 2

You probably expect much more than an electronic mimic ... maybe
some answers! Give your computer some numbers without the quotation
marks. Type:

PRINT 2 + 2
Much better. This time the computer prints the answer:
4

The quotation marks obviously have a meaning. Experiment with them
some more. Type each of these lines:

PRINT S5+4 (ENTER

PRINT "S+4"

PRINT "S+4 EQUALS" S5+4
PRINT 6/2 "I5 G/2"
PRINT "8/2" (ENTER

PRINT 8/2 (ENTER)

Any conclusions on what the quotes do?

RULES ON STRINGS v NUMBERS

The computer sees everything you type as strings or numbers. If it's in
quotes, it's a string. The computer sees it exactly as it is. If it's not in
quotes, it's a number. The computer figures it out like a numerical
problem.

A Color Calculator, No Less!

Any arithmetic problem is a snap for the computer. Do some long division.
Type:
PRINT "3862 DIVIDED BY 13,2 IS" 3862/13.2 (ENTER

Do a multiplication problem:
PRINT 1589 * 23

Notice that the computer’s multiplication sign is an asterisk (#), rather than
the sign you use in math (X). The computer’s so precise that it would get the
X multiplication sign mixed up with the X alphabetical character.

Try a few more problems:

PRINT "15 % 2 = " 15%2 (ENTER
PRINT 18 # 18 "1S THE SQUARE OF 18"
PRINT 33.3/22,82 (ENTER)

Now it's your turn. Write two command lines that print these two problems
as well as their answers:

137 /7 13.2 =
93 % 43 =

DO-IT-YOURSELF COMMAND LINES

The computer thinks of
quotes as a journalist does. If
the number’s in quotes, the
computer must PRINT it ex-
actly as it appears. If it'’s not
in quotes, the computer can
interpret it by adding, sub-
tracting, multiplying, or di-
viding it.

Notice how the computer
handles parts in quotes v
parts not in quotes.

15

Actually, there’s no “cor- |

rect’”” command line. For
that matter, there is no cor-
rect way of handling your
computer. There are many
ways of getting it to do what
you want. Relieved? . ..
Good!

If you don't get the right col-
ors, refer to the color test in
Introducting Your Color
Computer 2.

16

If you use the ““correct’” command lines, this is what the computer prints on
your screen:

157 /13,2 =11,8939394
95 * 43 = 4085

Ready for the answers:

PRINT "137 / 13.2 =" 137/13.2
PRINT "95 % 43 =" 9543

It Has Its Rules . ..

By now, the computer has probably printed some funny little messages on
your screen. If it hasn’t, type this line, deliberately misspelling the word
PRINT:

PRIINT "HI" (ENTER

The computer prints:

TSN ERROR
2SN ERROR stands for “’syntax’” error. This is the computer’s way of saying,
“The command ‘PRIINT’ is not in my vocabulary . . . | have no earthly idea

what you want me to do.” Any time you get the ?SN error, you probably
made some kind of typographical mistake.

The computer also gives you error messages when it does understand what
you want it to do, but it feels you're asking it to do something that is
illogical or impossible. For instance, try this:

PRINT 5/@
The computer prints:
/@ ERROR
which means, ““Don’t ask me to divide by O—that’s impossible!”’

If you get an error message you don't understand, flip to the Appendix.
We've listed all the error messages there and what probably caused them.

It’s a Show-off Too

So far, all you’ve seen your computer do is silently print on a green screen.
But your color computer enjoys showing off. Type:

CLS(3) (ENTER

Now your screen is a pretty shade of blue with a green stripe at the top.
Your command told the computer to clear the screen and print color
number 3—blue.

But why the green stripe? Whenever the computer prints characters, it must
use a green background, not a blue background. Type some more charac-
ters. The computer uses a green background for them also.

Colors other than green are for printing pictures. You'll learn how to do that
later.

Press to get the OK prompt. Then type:

BUG: If you see a message

CLS(7) saying MICROSOFT, or if |

you see a ?FC Error message,

Now your screen is magenta (pinkish purple) with a green stripe atthe top. | you're using a number other
than 0 through 8.

Try some more colors. Use any number from 0 to 8. The Color Computer
has nine colors. Each color has a numeric code.

Type CLS without a number code:
CLS

If you don’t use a number code, the computer assumes you simply want a
clear green screen.

Computer Sound Off—One, Two . ..

Type this:
SOUND 1 100
If you don’t hear anything, turn up the volume and try again.

What you're hearing is 6 seconds of the lowest tone the computer can
hum. How about the highest tone? Type:

SOUND 255 100 (ENTER

OK, so it has a good “hum-range” . . . hope you're suitably impressed. Try
some other numbers. Hope you like the computer’s voice (it's the only one
it has).

You want to know what the other number is for? (Or maybe you’ve already
found out.) The second number tells the computer how long to hum the
tone. You can use any number from 1 to 255. Try 1:

SOUND 128, 1 (ENTER
The computer hums the tone for about 6/100ths of a second. Try 10:

BUG: Again, if you geta ?2FC

SOUND 128, 1@ (ENTER Error message, you're using
) | a number other than 1
The computer sounds the tone for 6/10ths of a second. Try variations of through 255.

both numbers, but keep in the range of 1 to 255.

17

| Curious about the reversed

colors? They’re for people
with a Color Computer 2
and a printer. The printer
prints all “reversed”’ letters
in lowercase.

If you have a Deluxe Color
Computer, your computer
can understand commands
| in “reversed” or “lower-
case’ type. See Introducing
. your Deluxe Color Com-
| puter to learn how to get in
the upper/lower case mode.

18

Before You Continue. ..

Press the SHIFT) and (0) (zero) keys, holding both down at the same time.
Now release them and type some letters. The letters you type should be
green on a black background. If they're not, try again, pressing (SHIFT)
slightly before (0. Be sure to hold down both keys at the same time and
then release them.

Now, with the colors “reversed,” press (ENTER) and then type this simple
command line:

PRINT "HI" (ENTER)

The computer gives you a ?SN ERROR. It doesn’t understand the
command.

Press the (SHIFT) and (0) characters again and release them. Type some
letters. They should be back to normal: black with the green background.
Press and type the same command line again. This time it works.

The computer can’t understand any commands you type with reversed
colors. If you ever press SHIFD() by mistake and find you're typing with
these reversed colors, press (SHIFT)(0) again to get the colors back to
normal.

Learned in Chapter 1

BASIC WORDS KEYBOARD CONCEPTS
CHARACTERS
PRINT = string v numbers
SOUND error messages

CLS

A refresher like this is at the end of each chapter. It helps you make sure
you didn’t miss anything.

Notes

CHAPTER 2

YOUR COMPUTER NEVER
FORGETS

(. . . unless you turn it
off ...)

One skill that makes your computer so powerful is its “memory.” Have it
“remember’’ the number 13. Type:

= 13 (ENTER)

Now “confuse’” the computer by typing whatever you want. When you're
done, press (ENTER). See if the computer remembers what A means by
typing:

PRINT A (ENTER

Your computer remembers that A is 13 as long as you have iton . . . oruntil
you do this. Type:

A =17.2 (ENTER
If you ask it to PRINT A now, it prints 17.2.

This is what happened in your computer’'s memory:

YOUR COMPUTER’'S MEMORY

You don’t have to use the letter A. You can use any letters from A to Z. In
fact, you can use any two letters from A to Z. Type:

B = 15 (ENTER
C = 20 (ENTER
BC = 25 (ENTER)

. Did it get confused? or |
forget?

If you afready know BAS!C T
you may be accustomed to |
using the word LET before |
these command lines. The |
Color Computer doesn’t let |
you use the word LET. |

19

To the computer, a dollar
sign means a string.

Try to set the computer to
remember a letter we
haven’t used yet. What hap-
pens? Interesting . . .

As we said before, the com-

puter has its rules and might |
get a little fussy with you if |

‘you don't play by them.

Match error. It means you
didn’t go by the rules.

20

TM stands for Type Mis-

Have it print all the numbers you’ve asked it to remember. Type:
PRINT A:B: Cs BC

If you want the computer to remember a “'string”’ of letters or numbers, use
a letter with a dollar sign ($). Type:

A$ = "TRY TO"
B$ = "REMEMBER"
C$ = "THIS, YOU"

BC¢ = "GREAT COMPUTER"

Then type:
PRINT A%, B%$+ C%+ BC% (ENTER

“Computer types”” have a name for all the letters you've used: “'vari-
ables.”” So far, you've used these variables:

YOUR COMPUTER’S MEMORY
NUMBERS CHARACTERS

o A—si72 A$— “TRY TO"
o) B—15 B$— “REMEMBER"’
o C =220 C$—"THIS, YOU”

BC —25 BC$— “GREAT COMPUTER"”

Spot-check the above variables to see if the computer remembers the right
information. For instance, to see if BC still contains 25, type:

PRINT BC (ENTER)

Think of variables as little boxes in which you can store information. One
.set of boxes is for strings; the other set’s for numbers. Each box has a label.

The Computer Is Fussy About Its Rules

Do you think the computer accepts these lines?

"G" (ENTER

D=
Z="THIS IS STRING DATA"

' The computer responds to both above lines with 2TM ERROR. It's telling

you that you have to play by its rules.

The rules “ignored”” by the above lines are:

RULES ON STRING DATA
(1) Any data in quotes is STRING DATA.
(2) You can assign STRING DATA only to variables WITH A § SIGN.

To make the above lines obey the computer’s rules, use a dollar sign with
the D and Z. Type:

De = "6" (ENTER
Z% = "THIS IS5 STRING DATA" (ENTER

The computer now accepts these lines.

How about this line? Do you think the computer accepts it?

D% = B (ENTER

The above line ignored these rules:

RULES ON NUMERIC DATA
(1) Numbers not in quotes are NUMERIC DATA.

(2) Numeric data can only be assigned to variables WITHOUT A $
SIGN.

Type this, which the computer accepts:

D
Z

G (ENTER)
12 (ENTER)

You've now added this to your computer’s memory.

YOUR COMPUTER’S MEMORY
NUMBERS STRINGS

D_" 6 D$_“ ”6”
Z—=12 Z$ —"THIS IS STRING DATA"

o
OO

Now do something interesting with what you've asked the computer to
remember. Type:

PRINT D * 2
The computer prints the product of D times 2.
Try this line:

PRINT 2/D

~ The computer remembers

that D = 6.

21

22

The computer prints the quotient of Z divided by D.
Would this work?
PRINT D$ * 2 (ENTER

Did you try it? This makes the computer print the same ?TM ERROR. [t
cannot multiply string data.

Cross out the commands below that the computer rejects:

EXERCISE WITH VARIABLES

F =22,9999999
M ="ig,2"

DZ$ = "REMEMBER THIS FOR ME"
M$ =15

Z =F+F

Finished? These are the commands the computer accepts.

F=22,9999999
DZ$ = "REMEMBER THIS FOR ME"
Z=F+F

RULES ON VARIABLES

You may use any two characters from A to Z for a variable. The first
character must be a letter from A to Z; however, the second may be
either a numeral or a letter. If you want to assign it string data, put a
dollar sign after it. Otherwise, it can hold only numeric data.

Learned in Chapter 2
CONCEPTS

Variables
String v Numeric Variables

Now that you've learned how the computer thinks, it will be easy to write
some programs. How about a break, though, before going to the next
chapter?

Notes

23

24

CHAPTER 3

SEE HOW EASY IT IS?

Type:
NEW

This erases whatever may be in the computer’s “memory.”

Now type this line. Be sure you type the number 10 first—that’s important.
1@ PRINT "HI+ I‘M ¥YOUR COLOR COMPUTER™"

Did you press (ENTER)? Nothing happened, did it? Nothing you can see, that
is. You just typed your first program. Type:

RUN (ENTER

The computer obediently runs your program. Type RUN again and again
to your heart’s content. The computer runs your program any time you
wish, as many times as you wish.

Since this works so well, add another line to the program. Type:
20 PRINT "WHAT IS YOUR NAME?" (ENTER

Now type:
LIST (ENTER

Your computer obediently lists your entire program. Your screen should
look exactly like this:

18 PRINT "HI, I‘M YOUR COLOR COM
PUTER"
20 PRINT "WHAT IS YOUR NAME?"

What do you think will happen when you run this? Try it. Type:
RUN (ENTER
The computer prints:

HI» I'M YOUR COLOR COMPUTER
WHAT IS YOUR NAME?

Answer the computer’s question and then press (ENTER). . . . What? There's
the ?SN Error again.

When you simply type your name, the computer doesn’t understand what
you mean. In fact, the computer can’t understand anything unless you talk
to it in its own way.

30 INPUT A%

This tells the computer to stop and wait for you to type something, which it
labels as A$. Add one more line to the program:

4@ PRINT "HI " A% (ENTER
Now list the program again to see if yours looks like mine. Type:

LIST (ENTER

Your program should look like this:

1@ PRINT "HI: I‘M YOUR COLOR COM
PUTER™

20 PRINT "WHAT IS8 YOUR NAME?"

30 INPUT A%

40 PRINT "HI " A%

Can you guess what will happen when you run it? Try it:
RUN

That worked well, didn’t it? This is probably what happened when you ran
the program (depending on what you typed as your name):

HIs I'MYOUR COLOR COMPUTER
WHAT IS5 YOUR NAME?

7 JANE

HI+ JANE

Use a word the computer understands: INPUT. Type this line: [
z
i

RUN the program again using different names:

HI»I'MYOUR COLOR COMPUTER
WHAT IS YOUR NAME?

? HUGO

HI HUGD

HI» I’'M YOUR COLOR COMPUTER
WHAT IS YOUR NAME?
?772-36-8B228

HI s 722-36-8228

HI+ I‘M YOUR COLOR COMPUTER
WHAT IS YOUR NAME®

? NONE OF YOUR BUSINESS

HI NONE OF YOUR BUSINESS

HI+ I'M YOUR COLOR COMPUTER
WHAT IS YOUR NAME?

?PIGET IT!!

HI: I GET IT!!

(The computer doesn’t care what you call yourself.)

Here’s what Line 30 did to your computer’s memory each time you ran the
program (assuming you gave it the same names we did):

!!’ you make a m!stake after
pressing (ENTER), simply

| rype the line over again.

25

To delete a program line, |

simply type and |

the line number. For |

example:
50
erases line 50 from the
program.

|
|

We're leaving out the “HI,”
part this time.

26

YOUR COMPUTER’S MEMORY

JANE
HUGO

772-36-8228

NONE OF YOUR BUSINESS
I GET IT!!

There’s an easier way to run your program over and over without having to
type the RUN command. Type this line:

5@ GOTO 1@

00000000000

v,

- O
O000O00OO000

Now run it. The program runs over and over again without stopping.
GOTO tells the computer to go back to Line 10:

210 PRINT "HI, I‘M YOUR COLOR COMPUTER"
20 PRINT "WHAT IS YOUR NAME?"

| 30 INPUT A%

\ 4@ PRINT "HI." A$

\50 GOTO 10

Your program now runs perpetually. Each time it gets to Line 50, it goes
back to Line 10. We call this a “loop.” The only way you can stop this
endless loop is by pressing the key.

Spotlight Your Name

Change Line 50 to give your name the attention it deserves. How do you
change a program line? Simply type it again, using the same line number.

Type:
o0 GOTO 40
This is what the program looks like now:

1@ PRINT "HI, I‘M YOUR COLOR COMPUTER"
20 PRINT "WHAT IS YOUR NAME?"
30 INPUT A%

M40 PRINT "HI " A$

50 GOTO 40

Type RUN and watch what this loop does. When you’ve seen enough,
press the key.

There’s a big change you can make simply by adding a comma or a
semicolon. Try the comma first. Type Line 40 again, but with a comma at
the end:

49 PRINT A%

Run the program. The comma seems to print everything in two columns.

Press (BREAK) and try the semicolon. Type:

49

PRINT A% 3

and run . . . You probably won’t be able to tell what the program’s doing

until you

press (BREAK). See how the semicolon crams everything together?

RULES ON PRINT PUNCTUATION

This is what punctuation at the end of a PRINT line makes the
computer do:
1. Acomma makes the computer go to the next column. Use it to print

in columns.

2. Asemicolon makes the computer stay where it is. Use it to “cram’’
what you print together.

3. No punctuation makes the computer go to the next line. Use it to
print in rows.

Want to

Color/Sound Demonstration

play with color and sound some more? First, erase memory.

Remember how?

Then enter this program:

1@
20
3e
4@
o0

PRINT "TO MAKE ME CHANGE MY TONE"
PRINT "TYPE IN A NUMBER FROM 1 TO 255"
INPUT T

SOUND T 50

GOTO 10

Run through the program to get a sample of the computer’s tones.

BUG:
other t

If you get a ¢FC Error when you run this program, you used a number
han 1 through 255. This error, like all errors, will make the computer

stop running the program.

What happens if you change Line 40 to:

40

SOUND 5@+ T

HINT: Look back in Chapter 1 where we talk about SOUND.

Know the answer? If you make the above change, the computer hums
the same tone each time, but for a different length of time, depending

on what

number you use.

DO-IT-YOURSELF PROGRAM

Press firstand then erase this program by typing NEW. Now see
if you can write a program, similar to the one above, to make the
computer show a certain color. Remember, there are 9 colors, 0
through 8.

HINT: Line 40 could be: 40 CLS(T).

Remember, if you make a

mistake on one of the lines,
simply type the line over
again.

NEW .. . wish
mine worked that easily!

In this program we're using
T as a variable. However,
we could use any letter.

Notice that line 30 asks for
T rather than T$. This is
because we want numeric
data rather than string data.

27

Press before typing
the line.

Don’t worry about IFITHEN
right now. We devate a
whole chapter to it later.

-
.___ﬁ/}

28

This is our program:

1@ PRINT "TO MAKE ME CHANGE MY COLOR"
20 PRINT "TYPE A NUMBER BETWEEN @ AND 8"

3@ INPUTT
4@ CLS(T)
5@ GOTO 10

Add Polish to the Program

Pressing the (BREAK) key is a sloppy way to stop the program from running.
Why not have the computer politely ask if you're ready to end? Change
Line 50 in the above program to:

5% PRINT "DO YOU WANT TO SEE ANOTHER COLOR™"

Then add these lines:

B@ INPUT R%
70 IF R$ = "YESE" THEN 20

Run the program. Type YES and the program keeps running. Type anything
else and the program ends.

This is what the program looks like now:

1@ PRINT "TD MAKE ME CHANGE COLDRS"
2@ PRINT "TYPE A NUMBER BETWEEN @ AND 8"

S 30 INPUTT

hoo48 CLS(T)
5@ PRINT "DO YOU WANT TO SEE ANOTHER COLOR"
6@ INPUT R%
“7@ IF R$ = "YES" THEN 2@

~

This is what the new lines do:
Line 50 prints a question.
Line 60 tells the computer to stop and wait for an answer: R$.

Line 70 tells the computer to go back to Line 20 /F (and only if)
your answer (R$) is ““yes.” If not, the program ends, since it has
no more lines.

You've covered a lot of ground in this chapter. Hope we're just whetting
your appetite for more.

Don’t worry if you don’t yet understand it perfectly. Just enjoy using your
computer.

BASIC WORDS CONCEPT KEYBOARD

Characters How to Change and Delete a (

NEW Program Line

INPUT

GOTO
RUN

PRINT,

PRINT;
LIST

IF/THEN

;

1
Learned in Chapter 3 5

Notes

29

The logic of this will become
clear later.

Remember to type NEW
before typing a new
program.

30

CHAPTER 4

COUNT THE BEAT

In this chapter you'll experiment with computer sound effects. Before
doing this, you need to teach the computer to count.

Type:
18 FORX=1TO 1@
20 PRINT "X = "X
30 NEXT X
4@ PRINT "I HAVE FINISHED COUNTING"

Run the program.

Run the program a few more times. Each time, replace Line 10 with one of
these lines:

16 FORX=1T0 100
16 FOR X =5TO0O 15
18 FORX=-2TO02
10 FORX =20T0 24

Do you see what FOR and NEXT make the computer do? They make it
count. Look at the last program we suggested you try:

18 FOR X =20T0 24

20 PRINT "X ="X

38 NEXT X

49 PRINT "I HAVE FINISHED COUMTING"

Line 10 tells the computer the first number should be 20 and the last
number should be 24. It uses X to label all these numbers.

Line 30 tells the computer to keep going back to Line 10 for the next
number—the NEXT X—until it reaches the last number (number 24).

Look at Line 20. Since Line 20 is between the FOR and NEXT lines, the
computer must print the value of X each time it counts:

=20
K=21
K =22
K=23
K= 24

Add another line between FOR and NEXT:
: PRINT "+ 4++ COUNTING +.,."

and run the program. With each count, your computer runs any lines you
choose to insert between FOR and NEXT.

rrra e =y

DO-IT-YOURSELF PROGRAM 4-1 |
Write a program that makes the computer print your name 10 times. E

g EE o e

HINT: The program must count to 10.

DO-IT-YOURSELF PROGRAM 4-2 I

Write a program to print the multiplication tables for 9 (91 through
9+10).

s —

HINT: PRINT 9+X is a perfectly legitimate program line.

T =T TR o ——————

DO-IT-YOURSELF PROGRAM 4-3

Write a program that prints the multiplication tables for 9«1 through
9%25.

e

e e —————

HINT: By adding a comma in the PRINT line, you can get all the
problems and results on your screen at once.

Finished? These are our programs:

Program 4-1 Program 4-2
1@ FORX =170 1@ 18 FOR X =1T0 10
20 PRINT "THOMAS" 20 PRINT "Q#"X"="g#X
30 NEKXKT R 30 NEXKT X
Program 4-3

1@ FOR X =1 T0O 25
20 PRINT "9%"X"="9%KX,
30 NEXT X

31

You may be wondering
about the programs you ran
at the first of this chapter
without using STEP. If you
omit STEP, the computer
assumes you mean STEP 1.

|
|
|

32

Counting by Twos

Now make the computer count somewhat differently. Erase your program
by typing NEW and then type the original program, using a new Line 10:

1@
20
3@
ae

FOR X

=2TO 1@ STEP 2

PRINT "X= " X
NEXT X
PRINT "I HAVE FINISHED COUNTING"

Run the program. Do you see what the STEP 2 does? It makes the computer
count by 2s. Line 10 tells the computer that:

The first X is 2
The last X is 10
...AND STEP 2. ..

All the Xs between 2 and 10 are two apart . . . thatis 2,4,6,8, and 10.
(STEP 2 tells the computer to add two to get each NEXT X.)

To make the computer count by 3s, make all the Xs three apart. Try this for

=3TO 1@ STEP 3

Run the program. This prints on your screen:

Line 10:
i@ FOR X
=3
=06
=9

It passes up the last X (number 10) because 9 + 3 = 12. Try a few more
FOR ... STEP lines so you can see more clearly how this works:

10
10
10

FOR X
FOR X
FOR X

5 TO 50 STEP 5
10 TO 1 STEP-1
1 TO 20 STEP 4

m nun

Counting the Sounds

Now that you’ve taught the computer to count, you can add some sound.
Erase your old program and type this:

7186 FOR x =170 255 L Don’t type the arrow, of |

20 PRINT "TONE " X _ course. It’s there to help you |
30 SOUND X 1 " _understand. |
43 NEXKT X

This program makes the computer count from 1 to 255 (by 1s). Each time it
counts a new number, it does what Lines 20 and 30 tell it to do:

Line 20—It prints X, the current count.
Line 30—It sounds X's tone.
For example:

The first time the computer gets to FOR, in Line 10, it makes X equal
to 1.

Then it goes to Line 20 and prints 1, the value of X.
Then Line 30 has it sound tone #1.
Then it goes back to Line 10 and makes X equal to 2
Eic,
What do you think the computer will do if you make this change to Line 10:
1¢ FOR X = 255T0 1 STEP -1
Did you try it? '

PROGRAMMING EXERCISE

Using STEP, change Line 10 so the computer will sound tones
from:

(1) The bottom of its range to the top, humming every tenth note.
(2) The top of its range to the bottom, humming every tenth note.
(3) The middle of its range to the top, humming every fifth note.

10

10

10
Ready for the answers? Try this: To pause the pro-
18 FOR X =1TO0O 255 STEP 10 gram while it’s running, |
\ press the GHIFD and @ keys |
16 FOR X =255T0 1 STEP -10 at the same time. Then press]
1@ FOR X =128T0 255 5TEP 5 any key to continue. !

DO-IT-YOURSELF PROGRAM 4-4
Now see if you can write a program that makes the computer hum:

(1) from the bottom of its range to the top, and then
(2) from the top of its range back to the bottom

The answer is in the back of this book.

33

34

But Can It Sing?
Yes. In Section Il, you'll learn how to compose your favorite songs.

Learned in Chapter 4

BASIC WORDS KEYBOARD CHARACTER
FOR...TO ...STEP SHIFN@)
NEXT
Notes

CHAPTER 5
Watch the Clock

You're now ready to show your computer how to tell time. Type:

18 FORZ =1T0 462 * 2
20 NEXT Z
3@ PRINT "I COUNTED TO 920"

Run the program. Be patient and wait a couple of seconds. Two seconds, to
be precise. It takes your computer two seconds to count to 920.

Lines 10 and 20 set a timer pause in your program. By making the
computer count to 920, you keep the computer busy for two seconds.

As you can see, this is groundwork for a stopwatch. Erase the program and

lype:
i@ PRINT "HOW MANY SECONDS?"
20 INPUT S
30 FORZ=1T0O 460%S
49 NEXT Z

29 PRINT S " SECONDS ARE UP! LI
Run it. Input the number of seconds you want timed on your stopwatch.

DO-IT-YOURSELF PROGRAM 5-1

| Itwould help if the stopwatch could sound some kind of alarm. Add
lines to the end of the program to give it an alarm.

35

Here’s the program we wrote:
16 PRINT "HOW MANY SECONDS"

2@ INPUT S
30 FORZ=1T0D 460 * S
4@ NEXT Z

3@ PRINT S " SECONDS ARE UP! 1 I

- G@ FORT=120 TD 180
This is how computerized | 7@ SOUND T 1
| timers work. 80 NEXTT

99 FORT = 15@ TO 14 STEP -1
100 SOUND T 1
116 NEXT T

12¢ GOTO S0

|
|
— |

Notice the GOTO line at the end of the program. It causes the message to
keep printing and the alarm to keep ringing until you press or
SHIFD(@).

Counting Within the Time

Before doing more with the clock, have the computer keep count within
the time. This concept will become clear to you shortly.

Type this new program:

18 FORX=1T03
20 PRINT "X =" X

/—‘——-II
) 30 FORY=1TO?Z
—4 40 PRINT, "y=" ¥
Notice the comma in Line S0 NEXTY
40. Try it without the com- B® NEXT X
ma. The comma makes Y
= " Y print on the next Run it. This should be on your screen:
column.
"' n=1
Y =1
) Y =2
H=2
Y =1
Y =2
X=23
¥ =1
Y =2

36

(
E--B@
40

Call ita count within a count or a loop within a loop—whatever you prefer.
Programmers call this a “‘nested loop.” This is what the program does:

It counts X from 1 to 3. Each time it counts X:
A. It prints the value of X
B. It counts Y from 1 to 2. Each time it counts Y:

1. It prints the value of Y

Whenever you put a loop inside another loop, you must close the inner
loop before closing the outer loop:

10
20

Right Wrong
FOR X =1T0 3 go1@ FORX=1TO3
FORY =1T0 2 »20 FOR Y =1T02Z2
NEXT Y I~ 30 NEXT X
NEXT X 4@ NEXT Y

Making a Clock

With these tools, you can make the computer do much more. Type this:

19 FORS =0 TO 59
PRINT S
SOUND 130 2

FORT=1T0 390
NEXT T

NEXT 8
PRINT "1 MINUTE IS UP"

Run the program. This is what it does:

It counts the seconds from 0 to 59. Each time it counts one second:
A. It prints the second.

B. It sounds a tone.

C. It pauses long enough for one second to pass.

When it finishes counting all the seconds from 0 to 59, it prints a
message that one minute is up.

37

[By adding this line, 120
GOTO 10, the clock will run
perpetually.

| Having a tough time with |
i this program? Skip it for |
| now. It'll seem easy later.

38

There’s a way to make this program look better. Add this line to clear the

screen:
15

CLS

Now run the program. This time the computer goes through these steps:

1. It counts the seconds from O to 59 (Lines 10 and 60). Each time it
counts one second:

A.
B.
G
D.

It clears the screen (Line 15).
It prints the second (Line 20).
It sounds a tone (Line 30).

It pauses long enough for one second to pass (Lines 40 and 50).

Il. When it finishes counting all the seconds from 0 to 59, it prints a
message that one minute has passed (Line 70).

Using this as groundwork, it's easy to make a full-fledged clock:

, 10 FORH=0T0 23
. 20 FORM=0TO59
.30 FORS=0TD59
4@ cLS
56 PRINT H":"M":"S
B0 SOUND 150, 2
» 70 FOR T =1T0 375
80 NEXTT
90 NEXT 8
100 NEXT M
TN110 NEXT H

Here’s an outline of what the computer does in this program:

I It counts the hours from 0 to 23 (Line 10). Fach time it counts a new
hour:

A.

It counts the minutes from 0 to 59 (Line 20). Each time it counts a
new minute:

1. It counts the seconds from 0 to 59 (Lines 30 and 90). Each
time it counts a new second:

It clears the screen (Line 40).

It prints the hour, minute, and second (Line 50).

It sounds a tone (Line 60).

It pauses long enough for one second to pass (Lines 70
and 80).

Du0 o

2. Whenitfinishes counting all the 59 seconds, it goes back to

Line 20 for the next minute (Line 100).

B. Whenitfinishes counting all the 59 minutes, it goes back to Line

10 for the next hour (Line 110).

. When it finishes counting all the hours (0-23), the program ends.

DO-IT-YOURSELF PROGRAM 5-2

Between Lines 90 and 100 you can add some tones that will sound
each minute. Write a program that does this.

DO-IT-YOURSELF PROGRAM 5-3

Write a program that makes your computer show each of its nine
colors for 1 second each.

I

The answers to both programs are in the back.

Learned in Chapter 5 ;
BASIC WORD PROGRAMMING CONCEPT |

CLS Nested Loops

I

Notes

39

CHAPTER 6

DECISIONS, DECISIONS . ..

Here's an easy decision for the computer:

. If you type “red” . .. then make the screen red
. or
. If you type “blue” . .. then make the screen blue

Easy enough? Then have the computer do it. Type this program:

1@ PRINT "DO ¥OU WANT THE SCREEN RED OR BLUE™Y"
20 INPUT C¢

. 3@ IFC% = "RED" THEN 100
| — 4@ IFC% = "BLUE" THEN 200.
; Don’t be confused by the : 1@ CLS(4)
i arrows or the spaces be- | 11@ END
| tween program lines. We |
| just put them in to illustrate | 200 CLS(3)

| the flow of the program.

Run the program a few times. Try both “red”” and “blue” as answers.
This is what the program does:

If you answer ‘‘red” . .. then . ..

1. Line 30 sends the computer to Line 100.

2. Line 100 turns your screen red.

Line 110 ends the program. (If the computer gets to Line 110, it never
makes it to 200.)

... On the other hand . ..
If you answer “‘blue” ... then ...
1. Line 40 sends the computer to Line 200.
2. Line 200 turns your screen blue.

3. Since Line 200 is the last line in the program, the program ends there.

40

What happens if you answer with something different from “red” or
“blue’”? Run the program again. This time, answer “‘green.”
This makes the screen red. Do you know why?

HINT: If the condition is not true, the computer ignores the THEN part
of the line and proceeds tc the next program line.

L T R AT M L S 4T moe o rmereimmre— o e T

PROGRAMMING EXERCISE

There's a way to get this program to reject any answer but “red”” or
“blue.” These are the two lines to add. You figure out where they go in
the program:

77 PRINT “YOU MUST TYPE EITHER RED OR BLUE"
|GOTO 20

“.Insert the line numbers.

HINT: The lines must come after the computer has had a chance to test
your answer for “red” or “blue.”

HINT: The lines must come before the computer makes your screen
Jired-hf

Answer: The lines need to come after Line 40 and before Line 100:

S® PRINT "¥0OU MUST TYPE EITHER RED OR BLUE"
6@ GOTO 2@ A

e o T T T T b A e ey S ST T

DO-IT-YOURSELF PROGRAM 6-1

After the computer turns the screen red or blue, have it go back and ask
you to type “red” or “blue’ again.

== T T ST R e e 3 e e — S E——

HINT: You need to change Line 110 and add Line 210.
Here’s a diagram of how we wrote this program.

_»10 PRINT "DO YOU WANT THE SCREEN RED OR BLUE?"
“ .20 INPUT C%

[y, 30 1FC$="RED" THEN 100 —
¥l40 1FC$ = "BLUE" THEN 200 —
+4/ 50 PRINT "YOU MUST TYPE EITHER RED OR BLUE"

) L60 GOTO 20

LN 00 BLSOOY e
110 GOTO 1@

200 LCLE8(3Y — — =——— R
~210 GOTO 1@

Trace the path the computer takes through this program. Go from one line
to the next; follow the arrows where indicated. Notice the difference
between the arrows going from the IF/THEN and the GOTO lines.

42

RULES ON IF/THEN AND GOTO

IF/THEN is conditional. The computer “branches’” only if the condi-
tion is true.

GOTO is unconditional. The computer always branches.

Although this chapter is short, you’ve learned an important programming
concept. You'll have the computer make decisions all through this book.

Learned in Chapter 6
BASIC WORDS

IF/THEN
END

Notes

CHAPTER 7

GAMES OF CHANCE

Thanks to a BASIC word called RND, the computer can play almost any
game of chance.

And even if you don’t want to play computer games, you’ll want to learn
two words this chapter introduces: RND and PRINT @. You'll also find in
this chapter some more uses of IF/THEN.

Type this program:
1@ PRINT RNDC(1@)

Run it. The computer just picked a random number from 1 to 10. Run it
some more times . . .

It's as if the computer is drawing a number from 1 to 10 out of a hat. The
number it picks is unpredictable.

To make the computer
pause while running the
program, press the
and keys at the same
time. Press any key to
continue.

that the numbers are random.

Type and run this next program. Press (BREAK) when you satisfy yourself b

10 PRINT RND(1@) 3
20 GOTO 1@

To get random numbers from 1 to 100, change Line 10 and run the
program.

16 PRINT RND(10@) 3

How can you change the program to get random numbers from 1 to 2552

The answer is;
10 PRINT RND(Z255) 3

A Random Show

Just for fun, have the computer compose a song made up of random tones.
Type:

410 T =RND(255)
. 20 SOUND T 1
~ 30 GOTO 1@

43

Run it. Great music, eh? Press (BREAK) when you’ve heard enough.

| sneak preview: Enjoying | — '

| graphics and sound? Go | | DO-IT-YOURSELF PROGRAM 7-1
| ahead and try out some |
i programs in Section [, |

| ““Sights and Sounds.” . !

. Add some lines to make the computer show a random color (1-8) just
before it sounds each random tone.

Here’s our program:

71l@ T =RND(Z233)
[14 C=RND(B)

| 168 CLS(C)

\ 20 SOUND T 1
~39 GOTO 1@

We have a few simple games in this chapter. Feel free to use your imagina-
tion to add interest to them—or invent your own.

Russian Roulette

In this game, a gun has 10 chambers. The computer picks, at random,
B ~ which of the 10 chambers has the fatal bullet. Type:

! ﬂ;”ﬁﬂ;g;éﬁéﬁ; | 110 PRINT "CHODSE YOUR CHAMBER(1-10)"
! a new program. : [20 INPUT X
b | 30 IF X =RND(1®) THEN 100

\/ 4¢ SOUND 200 1

‘5-. 5@ PRINT "--CLICK--"

\B0 GOTO 10

190 PRINT "BANG--YOU’RE DEAD"

First, in Line 20, the player inputs X (a number from 1 to 10). Then, the
computer compares X with RND(10) (a random number from 1 to 10).

Then it follows the ““arrows’":

. If X is equal to RND(10), the computer goes to Line 100, the “dead
routine.”

o If X is not equal to RND(10), the computer ““clicks”” and goes back to
Line 10, where you get another chance . ..

Make the dead routine in Line 100 better. Type:

': »100 FOR T =133 70 1 STEP -5
| [110 PRINT " BANG! ! 111"

Remember how to list ,_oa rtof '_-]
a program? LIST 5@-130
lists the program’s middle

part. .

T Tate \ 120 SOUND T 1
Try this when listing a long | 130 NEXT T
program: At the start of the : 140 CLS

pro ! ‘
g b oD ,;;;gg@;, ! 150 PRINT @ 230, "SORRY » YOU ‘RE DEAD"

pause. Then press any key to | 16@ SOUND 1, 50
soliknds; : i 170 PRINT @ 390, "NEXT VICTIM, PLEASE"

Run the program. Here’s what the routine does:

Lines 100-130 make the computer sound descending tones and print

44

Line 140 clears the screen. Since no color is given, the computer makes the
screen green.

Lines 150 and 170 use a new word—PRINT @—to position two messages
on your screen: SORRY, YOU’RE DEAD and NEXT VICTIM, PLEASE.

The grid below shows the 511 positions on your screen. Line 150 prints

SORRY, YOU'RE DEAD at position 230 (224 + 6). Line 170 prints NEXT

VICTIM, PLEASE at position 390 (384 + 6).
AR

DO-IT-YOURSELF PROGRAM 7-2

Change this program so that if the player does manage to stay alive for
10 clicks, the computer pronounces the player the winner, printing
this message on the screen:

24 g4 au E'LI LEE
2% v |0 &3& E

264 p riadv] B L BVIE
320

HINT: You can use the FOR/NEXT loop, so that the computer can keep.
count of the number of clicks.

Our answer is in the Appendix.

Rolling the Dice

This game has the computer roll two dice. To do this, it must come up with
two random numbers. Type:

The grid is in the Appendix, |
“PRINT @ Screen Loca- |
tions.” Use it to plan your |
programs’ screen formats. |

45

1@
Z0
30
4@
S0
G@
70
80
9@

A¥="yes~

100

LS
X =RND(B)

RND(G)

H+ Y

PRINT @ 200 s X

PRINT @ 214, ¥

PRINT @ 394, "YOU ROLLED A" R

PRINT @ 454 "DD YOU WANT ANOTHER ROLL™"
INPUT A%

IF A% = "YES" THEN 10

a-< X0

m un on

Run the program.
Line 10 clears the screen.

Line 20 picks a random number from 1 to 6 for one die. Line 30 picks a
random number for the other die.

Line 40 adds the two dice to get the total roll.

Lines 50-70 print the results of the roll.

Line 90 lets you input whether you want another roll. If you answer “yes,"”
the program goes to Line 10 and runs again. Otherwise, since this is the last
line in the program, the program ends.

Since you know how to roll dice, it should be easy to write a ““Craps”’
program. These are the rules of the game (in its simplest form):

1. The player rolls two dice. If the first roll’s a 2 (“snake eyes”), a 3
(“cock-eyes’’), ora 12 (“boxcars’’), the player loses and the game’s
over. v

If the first roll’s a 7 or 11 (“a natural”’), the player wins and the
game’s over.

If the first roll’s any other number, it becomes the player’s ““point.”
The player must keep rolling until either “making the point” by |
getting the same number again to win, or rolling a 7, and losing.

You already know more than enough to write this program. Do it.
Make the computer print it in an attractive format on your screen and
keep the player informed about what is happening. It may take you a
while to finish, but give it your best. Good luck! !

DO-IT-YOURSELF PROGRAM 7-3

e

Our answer's in the back.

Learned in Chapter 7
BASIC WORDS f

RND
PRINT @

Notes

46

CHAPTER 8

READING

Your computer is a natural at teaching. It's patient, tireless, and never
makes a mistake. Depending on the programmer (you, of course), it also
can be imaginative, consoling, and enthusiastic.

Using RND, have it teach you math. Type:

i@ CLS

20 X =RND(13)

30 Y =RND(13)

4@ PRINT "WHAT IS"™ X "#" Yy " 20
43 INPUT A

50 IFA=X=#*Y THEN 90

6@ PRINT "THE ANSWER IS" X#*Y
7% PRINT "BETTER LUCK NEXT TIME"
80 GOTO 100

90 PRINT "CORRECT!I DM

18@ PRINT "PRESS <ENTER» WHEN READY FOR
ANOTHER"

105 INPUT A%

11 GOTO 12

The above program drills you on the multiplication tables, from 1 to 15,
and checks your answers.

Aa Bb Cc Dd Ee F§ Gg Hh Ti Jj Kk LI Mm Nn Oo

)

DO-IT-YOURSELF PROGRAM 8-1
Make the program drill you on addition problems from 1 to 100.

Are your programs getting
long? If you have a cassette
recorder, read your comput-
er’s introduction manual to
learn how to save your pro-
grams on tape. If you have
a Deluxe Color Computer,
you can also save programs
in memory. See your intro-

. duction manual to learn

how.

47

When you first turn on the

computer, all numeric vari- |

ables equal 0. When you |
type NEW (ENTER, all |
numeric variables also |
equal 0.

48

Here are the lines we changed:

20 X =RND(10@)

30 Y =RND(12@)

49 PRINT "WHAT IS" X "+" Y

43 INPUT A

S0 IFA=X+Y THEN 9@

B@ PRINT "THE ANSWER IS" X + ¥

Make the program more interesting. Have it keep a running total of all the
correct answers. Type:

13 T=T+1

95 C=C+1

98 PRINT "THAT IS" C "CORRECT QUT OF" T
"ANSWERS"

T is a ““counter.” It counts how many questions you're asked. When you
first start the program, T equals zero. Then each time the computer gets to
Line 15, it adds 1 to T.

C is also a counter. It counts your correct answers. Since C's in Line 95, the
computer doesn’t increase C unless your answer'’s correct.

e S ST . S s = e S T T

DO-IT-YOURSELF PROGRAM 8-2
Make the program more fun. Have it do one or more of the following:

. 1. Call you by name. |
| 2. Reward your correct answer with a sound and light show. !

. 3. Print the problem and messages attractively on your screen. (Use
PRINT @ for this.)

4, Keep a running total of the percentage of correct answers.

.

5. End the program if you get 10 answers in a row correct.

Use your imagination. We have a program in back that does this all.

|
2 T ec— T ———

First, Build Your Computer’s
Vocabulary . . .

To build your computer’s vocabulary (so that it can build yours!), type and
run this program:

18 DATA APPLESs» ORANGES s PEARS
20 FORX=1T03

30 READF#%

40 NEXT X

What happened . . . nothing? Nothing that you can see, that is. To see what
the computer is doing, add this line and run the program:

35 PRINT "F$ =:"F%
Line 30 tells the computer to:
1. Look for a DATA line.
2. READ the first item in the list—APPLES.

3. Give APPLES an F$ label.

4. “Cross out”” APPLES.

The second time the computer gets to Line 30 it is told to do the same:
1. Look for a DATA line. .

READ the first item—this time, it’'s ORANGES.

Give ORANGES the F$ label.

“Cross out”” ORANGES.

e o

When you run the program, this happens in the computer's memory:

0
YOUR COMPUTER ‘S MEMORY
0 it F& APPLES
DRANGES

[P]

PEARS

What if you want the computer to read the same list again? It's already
“crossed out’’ all the data . .. Type:

6@ GOTO 16
Run the program. You get an error: 20D ERROR IN 30. OD means “‘out of

data.” The computer’s crossed out all the data. e
Remember how to make the

Type this line and run the program: computer pause while run-
ning a program? Press
5S¢0 RESTORE (BHIFD (@) to pause and any

i ¢ . key to get it to continue.
Now it's as if the computer never crossed out any data. It reads the same list =

again and again.

You can put DATA lines wherever you want in the program. Run each of
these programs. They all work the same.

18 DATA APPLES 12 DATA APPLES DRANGES
20 DATA ORANGES & DATA PEARS
/30 FOR X =1T03 3¢ FORX=1T023
L 4@ READ F# 49 READ F%
‘55 PRINT "F& = :" F$% 50 PRINT "F$ =" F$%
"B@ NEXT X B@ NEXT X
70 DATA PEARS
730 FOR X =1T03 3¢ FORX=1TO3
49 READ F% 4@ READ F$%
50 PRINT "F$ = " F#%$ 50 PRINT "F$ = :"F%
“B0 NEXT X B2 NEXT X
70 DATA APPLES 78 DATA APPLES: ORANGES
8@ DATA ORANGES PEARS

99 DATA PEARS

49

50

Now Have It Build Your Vocabulary

Here are some words and definitions to learn:
Words Definitions

12 DATATACITURNs HABITUALLY UNTALKATIVE
20 DATA LOQUACIODUS s VERY TALKATIVE

30 DATAVOCIFEROUS, LOUD AND VEHEMENT

49 DATA TERSE: CONCISE

5% DATA EFFUSIVE, DEMONSTRATIVE OR GUSHY

Now get the computer to select one of these words at random. Hmmm . . .
there are ten items. Maybe this works:

6@ N=RND(10)

70 FORX =1TON

80 READ A%

90 NEXT X

18 PRINT "THE RANDOM WORD I5:" A%

Run the program a few times. It doesn’t work quite right. The computer’s
just as likely to stop at a definition as at a word.

What the computer really needs to do is pick a random word only from
items 1, 3, 5, 7, or 9. Fortunately, BASIC has a word that helps with this.

Type:
65 IF INT(N/2) = N/2 THENN =N -1

Now run the program a few times again. This time, it should work.

INT tells the computer to look at only the ““whole part’” of the number and
ignore the decimal part. For instance, the computer sees INT(3.9) as 3.

Assume N, the random number, is 10. The IF clause in Line 65 does this:

INT(10/2) = 10/2
INT(3) =3
5=5

The above is true: 5 does equal 5. Since it's true, the computer completes
the THEN clause. N is adjusted to equal 9 (1@ - 1).

Now assume N, the random number, is 9. The IF clause in Line 65 does
this:

INT(9/2) = 89/2
INT(4.3) = 4.5
4=4.,5

The above is not true: 4 does notequal 4.5. Since it's not true, the computer
doesn’t complete the THEN clause. N remains 9.

Besides reading a random word, the computer also must read the word’s
definition. Add these lines to the end of the program:

11@ READ B%
120 PRINT "THE DEFINITION IS :" B%

Now run the program a few times.

Have the computer print one random word and definition after the next.
Add this to the start of the program:

5 CLEAR 100

This reserves plenty of ““string space.” Add these lines to the end of the
program:

136 RESTORE
149 GOTO G@

This lets the computer pick a new random word and its definition from a
“restored”’ group of data items.

Here’s how the program now looks:
53 CLEAR 120

1 DATA TACITURN: HABITUALLY UNTALKATIVE
20 DATA LOQUACIOUS: VERY TALKATIVE

3¢ DATA VOCIFEROUS: LOUD AND VEHEMENT

49 DATA TERSE s CONCISE

30 DATAEFFUSIVE . DEMONSTRATIVE OR GUSHY
B® N =RND(1Q)

B IF INT(N/Z2) = N/2 THENN =N -1

70 FOR X =1TON

B2 READ A%

90 NEXT X

160 PRINT "A RANDOM WORD IS =" A%

110 READ B%

120 PRINT "ITS DEFINITION IS :" B%

130 RESTORE

14¢ GOTO G@

DO-IT-YOURSELF PROGRAM 8-3
Want to complete this program? Program it so that the computer:
1. Prints the definition only.
2. Asks you for the word.
3. Compares the word with the correct random word.
4

. Tells you if your answer is correct. If your answer is incorrect, prints
the correct word.

If you like, add some more
words and definitions by
adding DATA lines.

For variations on this pro-
gram, you might try states
and capitals, cities and
countries, foreign words and
meanings.

51

52

Feel free to add frills such as
a good-looking screen for-
mat or sound.

Here’s our program:

S
1@
20
30
a¢
S0
B@
B3
70
8@
9@
119
120
130
14@
150
160
170
180
190
209

CLEAR 500
DATA TACITURN» HABITUALLY UNTALKATIVE
DATA LOQUACIOUS » VERY TALKATIVE
DATA YOCIFEROUS » LOUD AND VEHEMENT
DATA TERSE » CONCISE
DATA EFFUSIVE + DEMONSTRATIVE OR GUSHY
N=RND(1D)
IF INT(N/Z) = N/J2 THENN =N -1
FOR X =1TON
READ A%
NEXT X
READ B4
PRINT "WHAT WORD MEANS :" B%
RESTORE
INPUT R%
IF R% = A% THEN 1398
PRINT "WRONG"
PRINT "THE CORRECT WORD IS :" A%
GOTOD 6@
PRINT "CORRECT"
GOTO 6@

Learned in Chapter 8
BASIC WORDS

DATA
READ
RESTORE
INT
CLEAR

Notes

CHAPTER 9
WRITING

Up to now, you've probably been changing programs the long and boring
way—by retyping them. If so, you’ll be glad you've arrived at this chapter.
You'll learn a new, easy way to change programs—by “editing”” them.

Don’t Throw Away That Line . ..
Edit It!
(EDIT)

Lt
-

L
L

|

Pretend you make a mistake typing a program. Line 50 somehow ends up:
50 DABA EFFFUSIVE.: GIMPY MUSHY

You can change this line the hard way, by retyping it— or the easy way, by
editing it. To get into Line 50’s “edit mode,” type:
/

EDIT S5© (ENTER
You see:

59 DABA EFFFUSIVE. GIMPY MUSHY
50

You're now in the edit mode. While in this mode, you can use any of the
special “edit keys’” to display or change Line 50. They're all listed later in
this chapter (Table 9.1).

Start by pressing (D), the edit key for “list.” The (L key displays the entire
line again and then puts you back at the start.

MOVE ON DOWN THE LINE (CURSOR MOVEMENT)

Press (SPACEBAR) a few times. This key moves you forward. To move
backward, press (=). Note that while in the edit mode merely back-
spaces; it doesn’t delete characters.

If you have a Deluxe Color
Computer, EDIT will not
work for you. You have a
better way of editing pro-
gram lines — the key.
The key is described in
Introducing Your Deluxe
Color Computer.

53

Once you enter the edit
mode, you don’t have to
press after subcom-
mands such as change, in-
sert, list, and so on.

54

Move to the start of Line 50 and press (5) (SPACEBAR). This moves you five
spaces forward — all at once. Do the same with (=). Press a number, such
as (3), and (=) and move that many spaces backward.

Move to the start of Line 50 and press (8) (for ““search”’) and then (E) (the
character for which you want to search). This moves you to the first E.
Move back to the start and press (2) (8) (E). This moves you to the second
E in Line 50. '

CHANGE THE LINE (CHANGE)

Make your first change to Line 50. Change DABA to DATA:
Move to the “wrong’’ character — the B in DABA.
Press (€) for “"change.”

Type the new character, in this case, T.

To be sure the change is made, press and you see:

5@ DATA EFFFUSIVE .. GIMPY MUSHY

Now make the next change: Change GIMPY to GUSHY. This time you’ll
change three characters at a time:

Move to the first wrong character — the | in GIMPY.
Press (3) (€ for “change three characters.”
Type the three new characters — USH
Line 50 is now:
50 DATA EFFFUSIVE s GUSHY MUSHY

If this were all you needed to do to Line 50, you could press (ENTER) and get
out of the edit mode. As you can see, though, you have much more work to

do.

YOU'RE OUT! (DELETE)

You need to delete a character — one of the F’s in EFFFUSIVE:
Move to the offensive character — the third F in EFFFUSIVE.
Press (D) for ““delete.”

And it's done. To confirm this, press again: T PRI
5@ DATA EFFUSIVE s GUSHY MUSHY we mean “‘spaces’’ too.

You can delete more than one character at atime. For example, if you press
(@) (@), you'll delete four characters at a time.

SQUEEZE IT ALL IN (INSERT)

You now need to insert some characters: GUSHY should be DEMON-
STRATIVE OR GUSHY.

Move to where you want to insert characters — the space before

the G in Gushy. Ifyou press (D to list the line

ST r while using insert, you’ll in-
Fress, (i or“imsertnmade: sert the letter “L" into the
Type your insert — DEMONSTRATIVE OR program line instead of

listing the line.
At this point, you're still in the insert mode. For example, if you press
(SPACEBAR), you'll insert a blank space; if you press (L), you'll insert an L.
Therefore, you need to:

Press GHIFT(1) to get out of the insert mode.
Now you can press to list the line:

5@ DATA EFFUSIVE., DEMONSTRATIVE OR GUSHY
MUSHY

HACKAMORE OR HACKALESS? (HACK)
With ““hack’ you alter (halter?) a line by hacking the end of it and inserting
new characters. Try hacking at Line 50:

Move to the first character you want hacked off — the M in MUSHY.

Press (H) for hack. This hacks off the rest of the line and puts you in
the insert mode.

Type your insert — in this case, type CRUSTY.
Press SHIFD(D) to get out of the insert mode.
If you list the line now (by pressing (L)), you see:
50 DATA EFFUSIVE: DEMONSTRATIVE OR GUSHY
CRUSTY

55

56

KILL THE ... AH ... MISTAKE (KILL)

Kill is almost the opposite of hack. It “’kills”" everything up to the nth
occurrence of a character. Suppose that, just for kicks, you want to kill the
first half of Line 50 — everything up to the comma. Move to the start of Line
50 and press these keys:

@

If you list Line 50 now, you see:

50 sDEMONSTRATIVE OR GUSHY CRUSTY

EXTENDED COLOR BASIC STRIKES AGAIN! (EXTEND)

Perhaps you want to “‘extend”” Line 50:

. Press (XD for extend. The cursor moves to the end of and you enter the

insert mode.

° Type your insert: AND MUSHY
. Press GHIFD(L) to get out of the insert mode.

Line 50 is now:

50 sDEMONSTRATIVE OR GUSHY CRUSTY AND MUSHY

Table 9.1/ Edit Keys

(n is a number. If you omit n, BASIC uses 1.)

Key Action

€5 Lists the line and moves to the start.

n(C@)characters Changes the next n characters
to riew characters.

@ Inserts characters.

n(D) Deletes n characters.

(@D) ““Hacks’"’ the rest of the line and
puts you in the insert mode.

Lets you extend the line

n(8)character Searches for the nth
occurrence of character.

€] Kills rest of line.

n(Kcharacter Kills (deletes) up to the nth
occurrence of character.

n(SPACEBAR) Moves n spaces forward.

n(=) Moves n spaces backward.

Mass Delete
(DELETE)

Up to now, you've deleted lines the simple way, like this:
=@ (ENTER

This works fine for one or two lines, but what if you want to delete 50 or 60
lines? You may find it easier to start over.

Extended Color BASIC comes to the rescue again with an easy way to
delete program lines — the DEL command. For instance, if you want to
delete Lines 30-50, type:

DEL 3@-50 (ENTER

Your Number’s Up!
(RENUM)

So now you can change everything about a program line except the line
number itself. Well, despair no more, because you can even do that with
RENUM.

To see how RENUM works, type this small program:

1@ PRINT "THIS IS THE FIRST LINE"
20 PRINT "THIS IS THE SECOND LINE"
3@ PRINT "HERE’S ANOTHER LINE"

49 GOTO 1@

Now renumber it. Type:

RENUM 100

List the program and you see the new line numbers beginning with 100.
Line 100 is what we call the newline:

10® PRINT "THIS IS THE FIRST LINE"
110 PRINT "THIS IS THE SECOND LINE"
12¢ PRINT "HERE'S ANOTHER LINE"

1390 GOTO 10@

Notice that even the GOTO line number reference is renumbered.
Renumber the program again with a newline of 200. Type:
RENUM 200,120 (ENTER

Here, the newline is 200, but the renumbering starts with Line 120. Line
120 is what we call the startline:

1@@ PRINT "THIS IS THE FIRST LINE"
11@ PRINT "THIS IS THE SECOND LINE"
200 PRINT "HERE’'S ANOTHER LINE"
210 GOTO 100

57

58

Renumber the program one more time giving it an increment of 50 be-
tween each line:

RENUM 300,50 (ENTER

Here the newline is 300. Since you omitted the startline, BASIC renumbers
the entire program. The increment between the lines is 50:

300 PRINT "THIS IS THE FIRST LINE"
35® PRINT "THIS IS THE SECOND LINE"
409 PRINT "HERE'S ANOTHER LINE"
450 GOTO 300

Here is the “syntax’’ of the RENUM command:

RENUM newline, startline, increment
Renumbers a program.
newline is the first new renumbered line. If you omit newline,
BASIC uses 10.
startline is where the renumbering starts. If you omit
startline, BASIC renumbers the entire program.
increment is the increment between each renumbered
line. If you omit increment, BASIC uses 10.

Note: RENUM does not rearrange the order of lines.

T T —

Try some other variations of this command. Type:
RENUM 20

This renumbers your entire program. The newline is 10, and the increment
is 20:

1@ PRINT "THIS IS THE FIRST LINE"
30 PRINT "THIS I5 THE SECOND LINE"
o0 PRINT "HERE'S ANOTHER LINE"

7@ GOTO 1@

Type RENUM 40,30, (ENTER). Here, the newline is 40; the startline is 30;
and the increment is 10:

18 PRINT "THIS IS THE FIRST LINE"
4@ PRINT "THIS IS THE SECOND LINE"
50 PRINT "HERE'S ANOTHER LINE"

6@ GOTO 1@

Type RENUM 5,40 (ENTER) and you get a ?FC Error. This is because the
result would move Line 40 ahead of Line 10.

L S SR e L ——— . 2 T

Learned in Chapter 9
' BASIC WORDS

EDIT
DEL
RENUM

e T la et e r e, mra e e e —— e

Notes

59

60

CHAPTER 10

ARITHMETIC

Solving long math problems fast and accurately is a task your computer
does with ease. Before typing long, difficult formulas, though, there're
some shortcuts you’ll want to use.

An easy way to handle complicated math formulas is with “’subroutines.”
Type and run this program:

10 PRINT "EXECUTING TH/E MAIN PROGRAM"
~20 GOSUB S0 '
»30 PRINT "NOW BACK IN THE MAIN PROGRAM"
4@ END

500 PRINT "EXECUTING THE SUBROUTINE"
5310 RETURN

Ax(BY + C) - D + E(G/W) - F

GOSUB 500 tells the computer to go to the subroutine that starts at Line
500. RETURN tells the computer to return to the BASIC word that im-
mediately follows GOSUB.

Delete Line 40 and see what happens when you run the program.

If you did this, your screen shows:

EAECUTING THE MAIN PROGRAM
EXECUTING THE SUBROUTINE
NOW BACK IN THE MAIN PROGRAM
EXECUTING THE SUBROUTINE
TRG ERROR IN 510

RG means “"RETURN without GOSUB.” Do you see why deleting END in
Line 40 causes this error?

At first, the program runs just as it did before. It goes to the subroutine in
Line 500 and then returns to the PRINT line that immediately follows
GOSUB.

Then, since you deleted END, it goes to the next line—the subroutine in
Line 500. This time, though, it doesn’t know where to return. This is
because it's merely “dropping’ into the subroutine; it is not being sent to
the subroutine by a GOSUB line.

This subroutine raises a number to any power:

1@ INPUT "TYPE A NUMBER" 3 N

2@ INPUT "TYPE THE POWER YOU WANT IT RAISED :
TO"3 P { _ -

30 GDSGB 2000 See something different

40 PRINT : PRINT N "T0O THE POWER OF" P "I§" E g o
50 GOTO 1@ = sage before waiting for your |
2000 REM FORMULA FOR RATISING A NUMBER TO A inpu

POMER
2010 E-=1

2020 FORX=1TOP
2030 E=E *N

2040 NEXT X

2050 IFP =@ THENE =1
2060 RETURN

Also introduced in this program are:

The colon (:), in Line 40. You can combine program lines using the
colon to separate them. Line 40 contains the two lines: PRINT and
PRINT N “TO THE” P “POWER IS E.

REM, in Line 2000. REM means nothing to the computer. Put REM
lines wherever you want in your program to help you remember
what the program does; they make no difference in the way the
program works. To see for yourself, add these lines and run the
program:

3 REM THIS IS A PECULIAR PROGRAM »

17 REM MWILL THIS LINE CHANGE THE PROGRAM?

45 REM THE NEXT LINE KEEPS THE SUBPROGRAM
SEPARATED

PRINT by itself tells the com-
puter to skip a line.

DO-IT-YOURSELF PROGRAM 10-1

Change the above program so that the computer prints a table of
squares (a number to the power of 2) for numbers, say, from 2 to 10.

The answer’s in the back.

Give the Computer a Little Help

As math formulas get more complex, your computer needs help under-
standing them. For example, what if you want the computer to solve this
problem:

Divide the sum of 13 + 3 by 8
You may want the computer to arrive at the answer this way:
13+3/8=16/8 =2

But, instead, the computer arrives at another answer. Type this command
line and see:

PRINT 13 + 3 / 8 (ENTER)

62

An “operation”’ is a problem
you want the computer to
solve. Here the operations
are addition, subtraction,
multiplication, and division.

The computer solves problems logically, using its own rules:

RULES ON ARITHMETIC
The computer solves arithmetic problems in this order:
1. First, it solves any multiplication and division operations.
2. Last, it solves addition and subtraction operations.

3. If there’s a tie (that is, more than one multiplication/division or
addition/subtraction operation), it solves the operations from left to
right.

In the problem above, the computer follows its rules:
First, it does the division (3/8 = .375)
Then, it does the addition (13 + .375 = 13.375)

For the computer to solve the problem differently, you need to use paren-
theses. Type this line:

PRINT (13 + 3) / 8 (ENTER

Whenever the computer sees an operation in parentheses, it solves that
operation before solving any others.

COMPUTER MATH EXERCISE

What do you think the computer will print as the answers to each of
these problems?

PRINT 10 - (5 -1) / 2
PRINT 10 -5 -1/ 2
PRINT (16 -5 -1) / 2
PRINT (16 -5) -1/ 2
PRINT 1@ - (5 -1 7 2)

Finished? Type each of the command lines to check your answers.
What if you want the computer to solve this problem?

Divide 10 minus the difference of 5 minus 1 by 2
You're actually asking the computer to do this:

(10-(5-1))/2

When the computer sees a problem with more than one set of parentheses,
though, it solves the inside parentheses and then moves to the outside
parentheses. In other words, it does this:

(10 — (6 — 1N /2

——p 5 —] = 4
(10 — 4)/ 2

> 6/2=38

RULES ON PARENTHESES

1. The computer solves operations enclosed in parentheses first, be-
fore solving any others.

2. The computer solves the innermost parentheses first. It then works
its way out.

COMPUTER MATH EXERCISE

Insert parentheses in the problem below so that the computer prints 28
as the answer:

PRINT30-8-B-7-6

Answer:
PRINT 38 - (9 - (B - (7 -B)))

Saving Routines

The program below uses two subroutines. It's for those of you who save by
putting the same amount of money in the bank each month:

16 INPUT "YOUR MONTHLY DEPOSIT"5 D
20 INPUT "BANK ‘'S ANNUAL INTEREST RATE"j I
30 I=1/12% .01
40 INPUT "NUMBER OF DEPOSITS"§ P
50 GOSUB 1000
~46@ PRINT "YOU WILL HAVE $" FV "IN" P "MONTHS"
| 70 END
1000 REM COMPOUND MONTHLY INTEREST FORMULA
1010 N=1+1
1020 GOSUB 2000
\ 31030 FY=Dx*((E-1)/1)
1040 RETURN
2000 REM FORMULA FOR RAISING A NUMBER TO A

POWER
2010 E =1
2020 FORX=1TOP
2030 E=E*N

+
2049 NEXT X
Z203@¢ IFP=@THENE =1
2060 RETURN

64

Notice that one subroutine ““calls’” another. This is fine with the computer
as long as:

there’s a GOSUB to send the computer to each subroutine, and
there’s a RETURN at the end of each subroutine.

Turn to the Appendix, ““Subroutines.”” You'll find useful math subroutines
you can add to your programs.

Learned in Chapter 10

BASIC WORDS BASIC SYMBOLS BASIC CONCEPTS
GOSUB () Order of operations
RETURN ! REM

Notes

CHAPTER 11

WORDS, WORDS,
WORDS . ..

Agreat skill of the computer is its gift with words. It can tirelessly twist and
combine words any way you want. With this gift, you can get it to read,
write, and even talk.

Combining Words

Type and run this program:

1@ PRINT "TYPE A SENTENCE"

20 INPUT S%

30 PRINT "YOUR SENTENCE HAS " LEN(S%) "
CHARACTERS"

40 INPUT "WANT TO TRY ANODTHER" 3 A%

S0 IF A% = "YES" THEN 10

Impressed? LEN(S$) computes the length of string S$—your sentence. The
computer counts each character in the sentence, including spaces and
_punctuation marks.

Erase the program and run this, which composes a poem (of sorts):

10 A% ="AROSE"

zg B$ = n n

30 C%="IS5 A ROSE"

490 D% =B% +C%

90 E%$ = "AND S0 FORTH AND SO ON"
6@ F$=A%+D$+D% +B% +E$

70 PRINT F%

Here the plus sign (+) combines strings. For example, D$ (/IS A ROSE”) is
a combination of B$ + C$.

There are two problems you may encounter when combining strings. Add
the following line and run the program. It shows both problems:

80 Gs=F$+F$+Fs+Fs+F$s+F$+F$

When the computer gets to Line 80, it prints the first problem with this line:
0S ERROR IN 80 (“out of string space’’).

| you ran the program from

You will not get the OS5 er- |
ror if you have not started
up your computer since

Chapter 8 with the CLEAR
500 line.

65

Not impressed? Later, we’'ll
show practical uses of this
unusual skill.

On startup, the computer reserves only 200 characters of space for work-
ing with strings. Line 80 asks it to work with 343 characters. To reserve
room for this many characters and more (up to 500), add this line to the
start of the program and run:

5 CLEAR S@0

Now when the computer gets to Line 80, it has enough string space, but
prints the second problem with this line: ZLS ERROR IN 80 (“'string too
long’). .

A string can contain no more than 255 characters. When storing more than
255 characters, you need to put these characters into several strings.

Twisting Words

Now that you can combine strings, try to take a string apart. Type and run
this program:

1@ INPUT "TYPE A WORD" 5 W%

20 PRINT "THE FIRST LETTER IS ¢ " LEFT$ (W$,1)

3@ PRINT "THE LAST 2 LETTERS ARE : " RIGHT%
(W$»2)

4¢ GOTO 1@

Here’s how the program works:
In Line 10 you input string W$. Assume the string is MACHINE:
COMPUTER MEMORY

W$—— MACHINE

In Lines 20 and 30, the computer computes the first left letter and the last
two right letters of the string:

MACHINE _
LEFTE (W$+1) RIGHTS (W% :2)

Run the program a few more times to see how it works.
Now add this line to the program:
9 CLEAR 500

so that your computer will set aside plenty of space for working with
strings. Run the program again. This time input a sentence rather than a
word.

PROGRAMMING EXERCISE

How would you change Lines 20 and 30 so that the computer will give
you the first 5 letters and the last 6 letters of your string?

20
30

Answers:

20 PRINT "THE FIRST FIVE LETTERS ARE :" LEFT%
(W% :3)

30 PRINT "THE LAST SIX LETTERS ARE =" RIGHT®%
(W% :6)

Erase your program and type this one:

18 CLEAR S0@

20 INPUT "TYPE A SENTENCE" 5 5%

30 PRINT "TYPE A NUMBER FROM 1 TO " LEN(S%)

40 INPUT X

30 PRINT "THE MIDSTRING WILL BEGIN WITH
CHARACTER " X

B® PRINT "TYPE A NUMBER FROM 1 TO " LEN(S%) - X
+:]

70 INPUT Y

80 PRINT "THE MIDSTRING WILL BE" Y
"CHARACTERS LONG"

90 PRINT "THIS MIDSTRING IS :" MIDS(SE X +Y)

1ige@ GOTO 20

Run this program a few times to see if you can deduce how MID$ works.
Here's how the program works:

In Line 20, assume you input HERE IS A STRING:

¥YOUR COMPUTER 'S5 MEMORY
5% —— HERE IS5 A BTRING

In Line 30, the computer first computes the length of S$, which is 16
characters. It then asks you to choose a number from 1 to 16. Assume you
choose 6.

InLine 60, the computer asks you to choose another number from 1 to 12
(16-6 4+ 1). Assume you choose 4.

-]
YOUR COMPUTER 'S MEMORY & ©

R

InLine 90, the computer gives you a “’mid-string’’ of $$ that starts at the 6th
character and is four characters long:

123 4535 6789 10 11 12 13 14 15 16
HE R E 185 A 5§ T R I N G
-—

MID$(S5%:6:4)
For another example of MID, erase the program and run this:

1@ INPUT "TYPE A SENTENCE" i 5%

20 INPUT "TYPE A WORD IN THE SENTENCE" 5 W$
30 L =LEN(WS$)

40 FOR X =1 TOD LEN(S%)

o0 IF MID%(S$:,X.:L) = W$ THEN 90

B@ NEXT X
70 PRINT "YOUR WORD ISN'T IN THE SENTENCE"
8® END

9¢ PRINT W$ "--BEGINS AT CHARACTER NO," X

Remember how to erase a
program? Type:
NEW (ENTER)

You can use this kind of
program to sort through in-
formation. For instance, by
separating strings, you could
look through a mailing list
for TEXAS addresses.

67

68

Here's how the program works:

In Line 20, assume you input the word 1S for W$. In Line 30, the computer
counts W$'s length: 2 characters.

YOUR COMPUTER ‘S MEMORY

54 —— HERE I8 A STRING
W —= IS

L o2

In Lines 40-90 (the FOR/NEXT loop), the computer counts each character
in S$, starting with character 1 and ending with character LEN(S$), which
is 16.

Each time the computer counts a new character, it looks at a new mid-
string. Each mid-string starts at character X and is L (2) characters long.

For example, when X equals 1, the computer looks at this mid-string:

1
HERE I 6§ A S TRINSG
-3

MID$(S% 41 :2)

The fourth time through the loop, when X equals 4, the computer looks at
this mid-string:

4
HERE L 5 A STRTINSG
-1—2—-

MID%(S% +4:2)

When X equals 6, the computer finally finds IS, the mid-string for which itis
searching.

DO-IT-YOURSELF PROGRAM 11-1
Start with a one-line program:
10 A$ = “CHANGE A SENTENCE.”
Add a line that inserts this to the start of A$:
IT'S EASY TO
Add another line that prints the new sentence:
| IT'S EASY TO CHANGE A SENTENCE

This is our program:

1@ A% = "CHANGE A SENTENCE.+"
20 B$ ="IT'S EASY TO"
30 Cé¢=DBs+" "+ A%

40 PRINTC%

DO-IT-YOURSELF PROGRAM 11-2
Add to the above program to make it:
« Find the start of this mid-string:
A SENTENCE
+ Delete the above mid-string to form this new string:
IT'S EASY TO CHANGE
» Add these words to the end of the new string:
ANYTHING YOU WANT
* Print the newly formed string:
IT’S EASY TO CHANGE ANYTHING YOU WANT

HINT: To form the string IT'S EASY TO CHANGE, you need to get the
left portion of the string IT'S EASY TO CHANGE A SENTENCE.

Answer:
10 A% = "CHANGE A SENTENCE."
20 B$ ="IT'SEASY TO"
30 C$=Bs+""+A%
4@ PRINTC% This program is the basis of a
5@ Y =LEN ("A SENTENCE") “word processing”’ pro-
6@ FORX =1 TOLEN(CS) g peba ploeay
70 IF MID$ (C$+X,¥) = "A SENTENCE" THEN 90 o
80 NEXT X
85 END

890 D% =LEFTS$ (C$,X - 1)
10@ E%$ =D%$ + "ANYTHING YOU WANT"
11 PRINTES%

DO-IT-YOURSELF CHALLENGER PROGRAM
Write a program that:
» Asks you to input a sentence.

» Asks you to input (1) a phrase within the sentence to delete and (2) a
phrase to replace it.

« Prints the changed sentence.

This may take a while, but you have everything you need to write it.
Our answer’s in the back.

69

70

Learned in Chapter 11

BASIC WORDS

LEN
LEFT$
RIGHT$
MID$

BASIC String OPERATOR
+

Notes

CHAPTER 12

A POP QUIZ

By using a word named INKEY$, you can get the computer to constantly
“watch,”” ““time,” or “'test’” what you're typing. Type and run this program:

10 A% = INKEY$%

20 IF A% <:>"" GOTO 50

30 PRINT "YOU PRESSED NOTHING"

49 GOTO 1@

30 PRINT "THE KEY ¥0OU PRESSED IS---" A%

INKEY$ checks to see if you're pressing a key. It does this in a split second.
At least the first 20 times it checks, you’ve pressed nothing (**).

Line 10 labels the key you press as A$. Then the computer makes a
decision:

If A$ equals nothing (' "), it prints YOU PRESSED NOTHING and
goes back to Line 10 to check the keyboard again.

If A$ equals something (anything but ** *’), the computer goes to Line
50 and prints the key.

Add this line and run the program:
6¢ GOTD 1@

No matter how fast you are, the computer is faster! Erase Line 30 to see
what keys you're pressing.

Beat the Computer

Type this program:

12 X =RNDC(4)

20 Y = RND(4)

3@ PRINT "WHAT IS" X "+" Y
49 T =0

50 A% = INKEY®$

B T=T+1

7@ SOUND 1281

B® IFT =15 THEN 200
90 IF A ="" THEN 50
190 GOTO 1@

200 CLS(7)
210 SOUND 180 30
220 PRINT "TOO LATE"

Here’s how the program works:

Lines 10, 20, and 30 have the computer printtwo random numbers and ask
you for their sum.

Line 40 sets T to 0. T is a timer.

Remember that < > means

“not equal to.”

" is an “‘empty string’
(nothing).

.

71

72

Remember the problem of
mixing strings with num-
bers? Chapter 2 will refresh
your memory.

Line 50 gives you your first chance to answer the question—in a split
second.

Line 60 adds 1 to T, the timer. T now equals 1. The next time the computer
gets to line 60 it again adds 1 to the timer to make T equal 2. Each time the
computer runs Line 60 it adds 1 to T.

Line 70’s there just to make you nervous.

Line 80 tells the computer you have 15 chances to answer. Once T equals
15, time’s up. The computer insults you with Lines 200, 210, and 220.

Line 90 says if you haven’t answered yet the computer should go back and
give you another chance.

The computer gets to Line 100 only if you do answer. Line 100 sends it
back for another problem.

How can you get the computer to give you three times as much time to
answer each question?

Answer:

By changing this line:
B@ IFT =45 THEN 200

Checking Your Answers

How can you get the computer to check to see if your answer is correct?
Would this work?

100 IF A% = X + Y THEN 130
110 PRINT "WRONG") X "+" ¥ "=% X + Y
120 GOTO 10

130 PRINT "CORRECT"

140 GOTO 10

If you run this program (and answer on time), you'll get this error message:
?TM ERROR IN 180

That's because you can’t make a string (A$) equal to a number (X +Y). You
somehow must change A$ to a number.

Change Line 100 by typing:
100 IF VAL(A%) = X + Y THEN 130
VAL(A$) converts A$ into its numeric value. If A$ equals the string *’5,” for

example, VAL(A$) equals the number 5. If VAL(A$) equals the string “‘C,"”
VAL(A$) equals the number 0. (“C" has no numeric value.)

To make the program more challenging, change these lines:

16 X =RNDC(49) + 4

20 Y = RND(49) + 4

990 B% =DB% + A%

19@ IF VAL(B%$) = X + Y THEN 130

Then add these lines:

45 B$ = ""
95 IF LEN(B$) <> 2 THEN 5@

A Computer Typing Test

Here’s a program that times how fast you type:

18 CLS

20 INPUT "PRESS <ENTER» WHEN READY TO TYPE
THIS PHRASE" i E%$

30 PRINT "NOW IS THE TIME FOR ALL GOOD MEN"

a8 T =1
5@ A% = INKEY%
6@ IF A% ="" THEN 100

7@ PRINT A%}

80 B% =B% + A%

9@ IF LEN(B%) = 32 THEN 120
i@ T=T+1

i1e¢ GOTO 3@

120 S=T/74
130 M=5/60
140 R =8/M
1530 PRINT

160 PRINT "¥0OU TYPED AT--"R"--WDS/MIN"

73

We coulg have made this
| calculation in one line by us-
ing parentheses:
I 126 R=8/((T/74)/
| 60y

| How abouta variation of this
| program—a speed-reading
| test?

74

Line 40 sets T, the timer, to 1.

Line 50 gives you your first chance to type a key (A$). If you're not fast
enough, Line 60 sends the program to Line 100 and adds 1 to the timer.

Line 70 prints the key you typed.

Line 80 forms a string named B$. Each time you type a key (A$), the
program adds this to B$. For example, if the first key you type is ““N,"" then:

A$ = "N"
and
B = B% + A%
B$ = " n + IINIF
Bs = IINII
If the next key you type is “‘O,” then:
A$ = IIDII
and
Be = B% + A%
B$= I!NIt+ IIDII
B$ = "NO"
If the third key you type is ““W,” then:
A$ = IINII
and
B$= IINDII+IINII
Bs = "NOW"

When the length of B$ is 32 (the length of NOW IS THE TIME FOR ALL
GOOD MEN), the program assumes you've finished typing the phrase and
goes to Line 120 to compute your words per minute.

Lines 120, 130, and 140 compute your typing speed. They divide T by 74
(to get the seconds), S by 60 (to get the minutes). They then divide the eight
words by M to get the words per minute.

Learned in Chapter 12
BASIC WORDS

INKEY$
VAL

Notes

CHAPTER 13

MORE BASICS

Before you're finished with the “basics,” you need to know a few more
words.

The first is STOP. Type and run this program:

12 A=1
20 A=A+1
3@ STOP
49 A=A+ 2
5@ STOP
6@ GOTO 20

The computer starts running the program. When it gets to Line 30, it prints:

BREAK IN 3@
Ok

You now can type a command line to see what’s happening. For example,
type:
PRINT A (ENTER)

The computer prints 2—A’s value when the program’s at Line 30. Now
type:
CONT (ENTER

The computer continues the program. When it gets to Line 50, it prints:
BREAK IN 50

Type:
PRINT A
This time the computer prints 4—A’s value at Line 50.

Type CONT again, and the computer breaks again at Line 30. If you have it
again print A, it prints 5—the value of A at Line 30 the second time through
the program.

Inserting STOP lines in your program helps you figure out why it's not
working the way you expect. When you fix the program, take the STOP
lines out.

7D

76

To save memory, you can
omit spaces in your program
before and after punctuation
marks, operators, and BASIC
words.

For Long Programs . ..

Clear memory and type:

PRINT MEM (ENTER)

The computer prints how much storage space remains in the computer’s
memory.

When you’re typing a long program, you will want to have the computer
PRINT MEM from time to time to make sure you're not running out of
memory.

Help with Typing

Type this program:

1@ INPUT "TYPE 1,2, 0OR 3"3 N
ON N GOSUB 100 200+ 300
' 30 GOTO 10

Y100 PRINT "YOU TYPED 1"
11 RETURN

\ 200 PRINT "YOU TYPED 2"

210 RETURN

" N300 PRINT "YOU TYPED 3"

319 RETURN
Run it.
ON ... GOSUB in Line 20 works the same as three lines:

i8 IFN=1THEN GOSUB 100
20 IF N =2 THEN GOSUB 202
22 IF N =3 THEN GOSUB 302

ON ... GOSUB looks at the line number following ON—in this case N.

If N is 1, the computer goes to the subroutine starting at the first line
number following GOSUB.

If N is 2, the computer goes to the subroutine starting at the second
line number.

If N is 3, the computer goes to the subroutine starting at the third line
number.

What if N is 47 Since there’s no fourth line number, the computer simply
goes to the next line in the program.

Here is a program that uses ON ... GOSUB:

S FORP=1TOGBOO®: NEXTP

16 CLS: X=RND(1@@): ¥ = RND(100)
20 PRINT "(1) ADDITION"

30 PRINT "(2) SUBTRACTION"

49 PRINT "(3) MULTIPLICATION"

30 PRINT "(4) DIVISION"

B® INPUT "WHICH EXERCISE(1-4)"3 R
7¢ CLS

780 ONR GOSUB 1000, 2000, 3000, 4000
//.(90 coTOS
(v
fgaino@m PRINT "WHAT IS" X "+" Y
| 1010 INPUT A
\ 1020 IF A =X+ Y THEN PRINT "CORRECT" ELSE
W\ PRINT "WRONG"
l“g 1030 RETURN
| Y2000 PRINT "WHAT IS" X "-" Y
\ 2010 INPUT A

IF A=X-Y¥ THEN PRINT "CORRECT" ELSE
PRINT "WRONG"
RETURN

PRINT "WHAT IS" X "#" ¥

INPUT A

IF A = X#Y THEN PRINT "CORRECT" ELSE
PRINT "WRONG"

RETURN

PRINT "WHAT IS" X "/" Y

INPUT A

IFA=X/Y THEN PRINT "CORRECT" ELSE
PRINT "WRONG"

RETURN

A
y 3

Notice the word ELSE in Lines 1020, 2020, 3020, and 4020. You can use
ELSE if you want the computer to do something special when the condition
is not true. In Line 1020, if your answer—A—equals X + Y, then the
computer prints CORRECT or else it prints WRONG.

Youmayuse ON . .. GOTOinasimilarwayasON ... GOSUB. Theonly
difference is that ON GOTO sends the computer to another line number
rather than to a subroutine.

Here's part of a program using ON . .. GOTO:

18 CLS

20 PRINT @ 134, "(1) CRAZY EIGHTS"

30 PRINT @ 166 "(2) 500"

49 PRINT @ 188, "(3) HEARTS"

5@ PRINT @ 354 "WHICH DO YOU WANT TO PLAY"

| When A does not equal X +
| Y, the condition set up in
| Line 1020 is not true.

el

.
— -

6@ INPUT A

65 CLS

770 ON A GOTO 1000, 2000+ 3000
&&%1909 PRINT @ 230+ "CRAZY EIGHTS GAME"
%§x§1019 END
mi%
hi 2009 PRINT @ 236, "S00 GAME"
. 2810 END
k“&am@m PRINT @ 235, "HEARTS GAME"

3019 END

77

78

Does the Job Say “AND” or “OR’’?

Anyone who speaks English knows the difference between ““and” and
“or'’—even your computer. For example, assume there’s a programming
job opening. The job requires:

A degree in programming
AND
Experience in programming

Erase memory and type:

i@
20
3@
a@

S0

PRINT "DO ¥OU HAVE--"

INPUT "A DEGREE IN PROGRAMMING" 5 D%

INPUT "EXPERIENCE IN PROGRAMMING" 3 E%

IF D$ = "YES" AND E$ = "YES" THEN PRINT "¥OU
HAVE THE JOB" ELSE PRINT "SORRY » ME CAN‘T
HIRE YOU"

GOTO 1@

Run the program. You may answer the questions this way:

DO YOU HAVE--

A DEGREE IN PROGRAMMING? NO
EXPERIENCE IN PROGRAMMING? YES
SORRY + WE CAN'T HIRE YOU

Now, assume the requirements change so that “‘or”” becomes ““and.” The
job now requires:

A degree in programming
OR
Experience in programming

To make this change in the program, type:

a@

IFD$ = "YES" OR E$ = "YES" THEN PRINT
"YOU’VE GOT THE JOB" ELSE PRINT "SORRY s WE
CAN'T HIRE ¥YOU"

Run the program and see what a difference AND and OR makes:

DO YOU HAVE--

A DEGREE IN PROGRAMMING?Y NO
EXPERIENCE IN PROGRAMMING?Y YES
YOU HAVE THE JOB

More Arithmetic
These words can save many program lines:

SGN
SGN tells you whether a number is positive, negative, or zero:

1@ INPUT "TYPE A NUMBER" 3 X

20 IF SGN(X) =1 THEN PRINT "POSITIVE"
30 IF SGN(X) = @ THEN PRINT "ZEROD"

4@ IF SGN(X) = -1 THEN PRINT "NEGATIVE"
5S¢ GOTO 10

Run the program, inputting these numbers:
i -3 -,012 © 22

ABS

ABS tells you the absolute value of a number (the magnitude of the number
without respect to its sign). Type:

1@ INPUT "TYPE A NUMBER" i N
20 PRINT "ABSOLUTE VALUE IS" ABS(N)
30 GOTO 1@

Run the program inputting the same numbers as the ones above.
STR$

STR$ converts a number to a string. Example:

19 INPUT "TYPE A NUMBER"3 N
20 A% = STRE(N)
30 PRINT A% + " IS5 NOW A STRING"

Exponents

Type and run this program to see how the computer deals with very large
numbers:

i X=1

20 PRINT X3
30 K=X=*10
49 GOTO 20

The computer prints very large or very small numbers in “exponential
notation.”” ““One billion’” (1,000,000,000), for example, becomes 1E+ 09,
which means “‘the number 1 followed by nine zeros.”

If an answer comes out “‘5E-06,”" you must shift the decimal point, which
comes after the 5, six places to the left, inserting zeroes as necessary.
Technically, this means 5%10-6, or 5 millionths (.000005).

Exponential notation is simple once you get used to it. You'll find it an easy
way to keep track of very large or very small numbers without losing the
decimal point.

Notice the OV (overflow)
error at the end. The com-
puter can’t handle numbers
larger than 1E+ 38 or smal-
ler than -1E+ 38. (It rounds
off numbers around 1E-38
and -1E-38 to 0.)

Ortechnically 1109, which

is 1 times 10 to the ninth
power: 1+«10+10+10=% |
10%10%10%10%10%10

In our BASIC, that’s 5/10/10/
10/10/10/10

79

Congratulations, Programmer!

You've now learned the “’basics’” and can no doubt write some decent
programs. The next section will help you add excitement to your programs

with graphics and music.

W—
Learned in Chapter 13
BASIC WORDS BASIC SYMBOLS BASIC CONCEPT
STOP SGN AND Exponential
CONT ABS OR notation
MEM STR$

Notes

SECTION 11

SIGHTS AND SOUNDS

Have you reached your fill of BASIC basics? In this section, you'll take a dra-
matic leap and learn to:

Draw a circle

Paint a house
Compose a song
Cool off with a cube
And much more!

And you'll also be amazed at how quickly and easily you can do this! So
turn the page and we'll get right to the point.

CHAPTER 14

LET’S GET TO THE POINT

One of the most exciting features of Extended Color BASIC is its ability to
display precise, varied, and easy-to-use graphics called “high-resolution
graphics.”

Justhow easy-to-use are these graphics? Well, let’s start with the most basic
(pun intended) graphic element—a dot (or point)—and build from there.

Extended Color BASIC makes it simple to put a dot on the screen. Type the
following program and see:

5 PMODE 11

18 PCLS

20 SCREEN 141

30 PSET (1@:20:8)
49 GOTO 40

Now run the program. The screen should be buff, and if you look carefully,
you can see a small orange dot in the upper left corner. That dot was put
there by the PSET (point set) in Line 30.

PSET lets you set a dot anywhere on the screen. It has this format:

PSET (h,v,c) sets a point on the current graphics screen

h is the horizontal position (0 to 255).

v is the vertical position (0 to 191).

c is the color (0 to 8). If you omit ¢, BASIC uses the current
foreground color.

Even though you can't see it, the computer has divided your screen into a
grid of nearly 50,000 dots—256 across and 192 down—so that you can
put a dot precisely where you want it. Simply look up the dot’s position in
the Graphics Screen Worksheet in the back of this manual.

Look at Line 30 again and see how PSET specifies the dot’s position (10
over and 20 down):

— 30 PSET (10:20,8)

e |,/

PR

A 10,600-mile journey
starts with a single step,
and even the Mona Lisa
began with a single stroke
on the canvas. (A Jackson
Pollock might begin with a
single splatter!)

Don't worry about any of
the new words. PMODE
and SCREEN, for instance,
determine the degree of de-
tail and the range of color.
They are covered in later
chapters.

You'll see these “‘syntax
blocks” throughout this
section. They’ll help you un-
derstand the “parameters”
you can use with graphic
statements.

85

Very Important Note! The
Color Computer can pro-
duce 9 colors: black, green,
vellow, blue, red, buff,
cyan, magenta, and orange.
The actual shade you get,
though, depends on your
TVi—not the computer. We

suggest you perform the
color adjustment test pro-

gram in your introduction
manual before running these
programs.

The 8 gives the color (or-
ange). Later, we’ll discuss
how to change the color.
For now, simply use orange.

86

Here's the statement you would use to set an orange dot in the center of the
screen:

PSET (128:96:8)

Now add a program line that sets an orange dot in the lower right corner
(255 over and 191 down).

Is this the line you used?
35 PSET (2535:191:8)

If so, congratulations! You’'ve made your point. Run your program and
you'll see.

Now list the program. It should look like this:

3 PMODE 1.1

1@ PCLS

2@ SCREEN 11

3@ PSET (10,20 :8)
3% PSET (255:1891.8)
49 GOTO 40

You're off to a great start . . .

. . . But What About the Color?

By now, you've probably figured out that you can change colors by
changing c to a different number in the range 0 to 8.

Within limits, this is true. However—and it's a big however—you may not
get the color you specified. There’'s a good reason for this, which we’ll
cover later in the discussion of the different graphic ““modes.” For now,
don’t worry if you don’t always get the color you want.

=
Here is the list of color codes:

Code Color
0 Black
1 Green
2 Yellow
3 Blue
4 Red
5 Buff
6 Cyan
7 Magenta
8 Orange

If you want to try changing the dots’ colors, use buff (5), cyan (6), or
magenta (7). Then change the color back to orange (8) before proceed-

ing. (These 4 colors are the only ones available with your current

program.)

Now You See It ... Now You Don’t

Any guesses how to turn off a dot? Here’s a hint: It's easy and it has to
do with color.

You see, you don’t really turn off the dot, you simply change its color so
that it blends into the background. You do this with a new statement:
PRESET (point reset). PRESET “’knows’’ you want to use the background
color, so you don’t need to give the color.

PRESET (h,v) resets a point on the current graphics screen

h is the horizontal position (0 to 255).
v is the vertical position (0 to 191).

DO-IT-YOURSELF PROGRAM 14-1

Get to know the dot positions on your TV screen by using your
Graphics Screen Worksheet.

Select several points on the worksheet, identify them in terms of their
(X,Y) coordinates, and display them on the screen using the program
we used to get you started. Don’t change any program lines except
those that contain PSET(h,v,c).

DO-IT-YOURSELF PROGRAM 14-2

Do you remember the RND (random) function from Section 12 If
not, review it; then write a short program that fills the screen with
random dots of random colors.

The Last Point

Before you finish this chapter, we want to make one more point. You
can use PPOINT to find out what color any dot on the screen is.

PPOINT (h,v) tells what color a point is on the current graphics screen

h is the point’s horizontal position (0 to 255).
v is the point’s vertical position (0 to 191).

This example shows how PPOINT can be handy to include in a program:

3
10
15
30
35
49
o0
6@
70
1@5
iie

PMODE 3.1
PCLS
SCREEN 141
K RND(1@)
Y RND(16)
C RND(8)
PSET (XY .:C)
IF PPOINT (5:5)=8 THEN GOTO 1@3
GOTO 30
CLS
PRINT B 190, "POSITION (5:5)
IS NOW ORANGE"

87

88

The computer fills a 10X10 ““square’’ (in the upper left corner of the screen)
with random colored dots. When the dot in Position (5,5) is filled with an
orange dot (Code 8), the computer displays the message POSITION (5,5) IS
NOW ORANGE.

Learned in Chapter 14

BASIC WORDS CONCEPTS
PSET Setting points
PRESET Resetting points
Changing colors
PPOINT Finding a point’s color
Notes

CHAPTER 15

HOLD THAT LINE!

So you can put a dot on the screen—even several dots. But what kind of
starting point is that, you may wonder, when you're eager to create some
“real’”” graphics.

To answer that question, think of some of your very first “drawings’” on
paper. Perhaps they were detailed pictures of clowns and trained seals and
other wonderful things. How did you draw such marvels? Probably by
connecting a bunch of dots.

And that is exactly how your computer ““draws.” You tell it which dots to
connect, and it draws a line.

That’s Some Line You Have

One way to tell the computer to draw a line between dots is to use the
Extended Color BASIC statement LINE. To see LINE at work, modify the
program that set the dots. (For the sake of convenience, call the program
“Lines.”")

First change Line 30 as follows:
30 LINE (@:0) - (255,191) +PSBET

Then delete Line 35 by typing:
35

Your program should now read:

5 PMODE 1.1

1@ PCLS

20 SCREEN 11

3@ LINE (@:0)-(255:191) ,PSET
49 GOTO 49

Now run the program. The screen should display an orange line that runs
from the upper left to the lower right on a buff background.

How about changing the direction of the line so that it runs from the lower
left to the upper right?

89

Using the Graphics Screen
Worksheet, plot the points
used in creating the in-
tersecting lines in the
“Lines’" program.

90

" You've probably already figured this one out, but—just in case—here’s the

new Line 30:
30 LINE (@:191)-(255:0) sPSET

X Marks the Spot

What about intersecting lines?

Reinsert the original Line 30 that drew the first line. (First, renumber it
as Line 25.) Then run the program. Does your screen display 2 orange
lines intersecting in the center?

In fact, you can put as many lines on the screen as you want—once
you learn the format. Here it is:

LINE (h1,v1)-(h2,v2),a,b draws a line or a box on the current
graphics screen

(h1,v1) is the line’s start point.

(h2,v2) is the line’s end point.

a is either PSET (set) or PRESET (reset).

b is either B (box) or BF (box filled). This is optional.

Note: You may omit the start point as discussed below.

Just as in the old dot-to-dot days, you may often want to draw a line that
begins at the last line’s end point. Whenever this is the case, you may omit
the start point. The computer automatically starts at either the end point set
by the latest LINE statement or—if you haven’t yet used LINE in the
program—at (128,96). Here is an example:

30 LINE (@+@)-(255:1891) +PSET
35 LINE -(191.@) +PSET

Line 20 draws a line from (0,0) to (255,191). Line 30 then draws another
line, this one from (255,191) to point (191,0).

Regardless of whether or not you include the start point, you must precede
the end point with a hyphen (-).

How About Dropping a Line?

We've discussed the line’s start and end points. Now let’s turn to the next
parameter in the LINE statement—PSET or 'PRESET.

Take another look at the program lines that created the intersecting lines:

3¢ LINE (@,@)-(25353+191) +PSET
33 LINE (2:191)-(255:0) +PSET

From your experience with turning on and off dots in Chapter 14, do you
have any idea what the PSET parameter is doing and what would happen if
you change it to PRESET? Try it and see. Change the PSET in Line 25 to
PRESET and run the program again:

30 LINE (@:2)-(2554+181) +PREBET

If you guessed that the orange line that ran from the upper left to the lower
right would ““disappear,”” you were right.

Now replace PSET in Line 30 with PRESET. The screen went blank, right?
The reason is the way PSET and PRESET work in a LINE statement:

PSET sets the line in the pre-specified foreground color.

PRESET sets the line back to the pre-specified background
color so that you can't see it.

Note: The PSET and PRESET parameters in a LINE statement are
not the same as the PSET and PRESET statements discussed in
Chapter 14. They do not specify a dot or a color code. They
merely specify that the line be set to the foreground or the back-
ground color.

Before proceeding, change the PRESET parameters in Lines 25 and 30
back to PSET. '

ToB (@Box)or Notto B ...

We've almost made it through LINE, but a few items still need to be (to B?)
covered.

B stands for “‘box.”

With Extended Color BASIC, you can make a box without having to write a
separate program line for each side. All you have to do is specify two
opposing corners of the box and add ,B to the statement. Then, when you
run the program, your computer creates a box instead of a line.

To illustrate this, call your “’Lines” program back into service.

5 PMODE 11

16 PCLS

20 SCREEN 1 s1

23 LINE (@.+@2)-(2553:+191) sPSET
30 LINE (@,181)-(2554+0) »PSET
49 GOTO 490

As is, the program creates 2 orange lines that intersect in the center of the
screen. Delete Line 30 and add the suffix ,B to Line 25. Now see what
happens when you run the program.

253 LINE (2:0)-(255:181) sPSET B

Did you box yourself in?

The color specification is
elsewhere in the program,
notin the LINE command, so
we'll come back to it later.
For now, just concentrate on
LINE.

91

92

DO-IT-YOURSELF PROGRAM 15-1

Write a program that creates a box with a pair of lines intersecting in
the center. We'll tell you why these are the only available colors when |
we discuss PMODE and SCREEN in the next 2 chapters. 5

Fill It Up

We're almost at the end of the LINE, so let's try to finish.

If you refer to the format of LINE, you can see you have the option of adding
F to the optional suffix ,B.

F lets you “fill”” the box with the foreground color. Try it. Change Line 25 as
follows:

23 LINE (@,0)-(2535,191) +PSET +BF

How about that! You should have a big orange box (256 x 192) on a buff
background. ’

That’s Color with a Capital C,
Capital O, Capital . ..

In Chapter 14, we explained how to use the ¢ parameter of the PSET
command to change the color of a dot. But we’ve also been talking for
some time about foreground and background colors. Now it's time to
explain them further.

Naturally, if you're using one color heavily, you don’t want to have to
specify it each time you put something on the screen. With the COLOR
feature, you don’t have to.

Within certain limits, the graphics feature COLOR lets you set the
foreground/background colors. (See “PMODE" and ““SCREEN" later in
this book.) Here is its format:

COLOR foreground,background sets the foreground and background
color on the current graphics screen

foreground is the code (0 to 8) for the foreground color.
background is the code (0 to 8) for the background color.

Note: As stated in Chapter 14, the only colors available with your
current program are buff (5), cyan (6), magenta (7), and orange
(8).

When you don’t specify the foreground and background colors, your
computer automatically chooses the highest-numbered available color
code for the foreground color and the lowest-numbered available color
code for the background color. That's why the crossing lines in the “’Lines"’
program are orange (8) on a buff background (5).

To see COLOR in action, call on “Lines’” again:

5 MODE 11

1@ PCLS

20 SCREEN 1 +1

25 LINE (2,0)-(2585,191) +PSET

3¢ LINE (©:191)-(255,0) +PSET
4@ GOTO 4@

Insert Line 6 into your program:
6 COLDOR 547

Now run the program. What do you think of buff lines crossing on a
magenta background?

Do you want to see what the colors look like when reversed? If so, retype or
edit the line like this:

B COLOR 75

In the next chapter, you’ll learn how to make even more colors available.

DO-IT-YOURSELF PROGRAM 15-2

Ready to try your own “Lines’” program? Can you build a house? Start
with Lines 5, 10, and 20 of the “‘Lines’” program and take it from there.
Be sure to add:

. A front door, of course.
. At least one window. (Don't forget to turn the lights on or off.)
o A chimney. (You won’t need a chimneysweep, notyetanyway!)

The overall design is up to you (Cape Cod, Ranch, or whatever), but
we've included a sample house (good view, no pets) program in the
back of the book. Don’t worry about doorknobs; we'll add those later.

Be sure to save this program on cassette, since you'll be needing it
later. (You'll find it much easier to draw the house if you plot its points
on a Graphics Screen Worksheet.)

DO-IT-YOURSELF PROGRAM 15-3

| This should be a real challenge for you.

As you know, a straight line is the shortest distance between two
points. Well, put a few extra miles between our two points. Use LINE
to draw a crooked line.

To get started, use Lines 5, 10, and 20 from the “Lines” program.

Learned in Chapter 15

BASIC WORDS CONCEPTS

LINE Drawing a line
Erasing a line

i Drawing a box

’ Filling in a box

COLOR Changing foreground and
background colors

If you used your Color Com- .

puter to draw an airplane

| and used COLOR to give it

the right color, would you
have flying colors?

COLOR is not an action
statement; it must precede

| an action statement (such as

PCLS or LINE) before the
foreground and background
colors are actually changed.

93

94

Notes

CHAPTER 16
THE SILVER SCREEN

Are you ready to find out about another statement? If so, turn down the
lights and butter the popcorn, because we're about to raise the curtain on
the silver screen.

E%r
WETTE

e TR | B
%‘:\T‘- il

oL RATIE

A Word About Video Memory

Whenever you want to display an image on your TV, the computer
stores the screen image in ““video memory.” The computer’s TV-circuitry
then ““reads’’ the screen image and displays it on your TV.

The “‘normal” video memory is large enough for text (letters and num-
bers) but not for graphics (circles, lines, boxes, and so on). Conse-
quently, the computer has two video memories: one for text and one for

graphics.

Lighting the Silver Screen

Take a look at our ““Lines’”” program for a second. Concentrate on the
SCREEN statement in Line 20:

3 PMODE 1.1

1@ PCLS

20 SCREEN 1.1

23 LINE (0,0)-(255+181) »PBET
30 LINE (@,181)-(255:+0) +PSET
4@ GOTO 40

SCREEN tells the computer to display a screen image on your TV. What
kind of screen it displays depends on the instructions you give it:

First, you tell the computer whether to use the TV screen for text (such
as letters or numbers) or graphics (such as lines and circles).

Second, you tell the computer what ““color set” to use.

95

96

Any time your program out-
puts text (PRINT, INPUT),
the computer automatically
performs a SCREEN 0,0
command. In a “2-color
mode,” described in the
next chapter, this gives you a
black and green screen.

SCREEN type, color set displays the current graphics or text screen

type is O (text screen) or 1 (graphics screen)
color set is 0 or 1

Note: If type or color set is any positive number greater than 1, your
computer uses 1.

In the “Lines’ program, change Line 20 to:
20 SCREEN 9.0

Then run the program. Does your computer “hang up’'? (Press (BREAK) to
regain control.)

Actually, the computer ran “’Lines,” just as before. This time, though, it did
not show you the graphics screen. You asked to see the text screen instead.

Now change Line 20 to:
20 SCREEN 1.0

Notice that you have the graphics screen again, but this time the color set
has been changed.

At first glance, it appears that you have only 2 color choices—0 and 1.
Actually, though, you're choosing from a much greater variety: You're
switching color sets, not individual colors.

Color Set 0 Green/Yellow/Blue/Red
Color Set 1 Buff/Cyan/Magenta/Orange

DO-IT-YOURSELF PROGRAM 16-1

Do you understand SCREEN? If you do, write a program that switches
from text screen to graphics screen. You might wantto puta loopin the
program so that it changes the color set after it loops through the
program. This way you can see all the SCREEN features at work.

Clearing the Silver Screen

(PCLS)
Your ““Lines’’ program should look like this:
2> PMODE 1.1
1@ PCLS

20 SCREEN 141

23 LINE (@,0)-(255,+191) PBET
30 LINE (©,191)-(255,0) +PEET
49 GOTO 49

Look at Line 10. It contains the PCLS statement. This statement simply
clears the graphics screen. (It serves the same function for the graphics
screen as CLS does for the text screen.)

Here is the syntax for PCLS:

PCLS color clears the current graphics screen

color is 0-8. If you omit the color, the computer clears the
screen to the current background color.

The "“Lines’” program doesn’t make use of PCLS’s color option. Therefore,
the computer uses the current background color, buff. Retype Line 10:

10 PCLS B

Run the program. Your screen now displays orange lines on a cyan
background.

Learned in Chapter 16

BASIC WORDS CONCEPTS
SCREEN Displaying the current screen
PCLS Clearing the graphics screen
Notes

97

98

CHAPTER 17

MINDING YOUR PMODES

What lets you produce exciting graphics is the massive size of graphics
memory. To get a perspective on this, contrast graphics and text memory:
Text memory has 512 memory locations; graphics memory has up to
12,288!

You can use the power of graphics memory in three ways:
. To produce graphics with very high resolution (fine detail).
. To produce graphics with many colors.

. To produce fast-changing, “animated’” graphics by retaining many
graphics screens in memory at once.

How much you can use of each of these features depends on how you
“set’”” graphics memory. The more you use of one feature—such as
retaining many screens in memory—the less you can use of the other
features (high resolution and colors).

PMODE—the unknown statement in the “Lines’’ program—is what sets
the features you want to use. PMODE lets you set 5 “modes,”” shown in
Table 17-1. Each mode, of course, has its own trade-off of features.

Table 17-1/ PMODE Settings

Resolution Colors Screens
PMODE 4 high 2 2
PMODE 3 medium 4 2 |
PMODE 2 medium 2 4 i
PMODE 1 low 4 4 |
2 8

PMODE 0 low

“Lines”” in Mode 4

Bring back “Lines” and see what it looks like in a different mode. In case
you've forgotten ‘‘Lines,”” here it is:

3 PMODE 1.1

106 PCLS

20 SCREEN 141

23 LINE (@.:0)-(255+191) +PSET
30 LINE (@,191)-(255:0) PSET
49 GOTOD 4@

Now change from Mode 1 to Mode 4.
2 PMODE 4.1
Run the program. You should spot two feature changes right away:

The color changes because you shifted from a 4-color mode
to a 2-color mode.

The lines are much finer because they're in high resolution.

(The next chapter talks about the third feature; the one having to do
with storing more than one graphics screen in memory.)

Colors a la Mode

A 2-color mode, just like a 4-color mode, has 2 color sets. You saw one of
the 2-color sets—black and buff—when you ran ““Lines” in Mode 4. To see
“Lines”” in the other 2-color set—black and green—make this change:

20 SCREEN 1.9

Table 17-2 shows what color sets you can use in 2-color and 4-color
modes.

Table 17-2/ Color Sets

: 2-Color 4-Color
| SCREEN 1,0 Black/Green Green/Yellow/Blue/Red

{: SCREEN 1,1 Black/Buff Buff/Cyan/Magenta/Orange |

“Lines”’—Through Thick and Thin

Notice that when you ran “Lines’’ in high resolution (Mode 4), you didn’t
have to change any dot positions. Color BASIC uses the same 256 x 192
screen grid, no matter what the resolution is.

For example, (128,96) is always the center of the screen, no matter what
resolution you're using, and (0,0) is always the upper-left corner of the
screen.,

The size of each dot on the screen, though, is different in each resolution:

' Low resolution uses four grid dots to set a screen dot. When the
computer sets Dot (0,0), forexample, italso sets (1,0), (1,1), and (0,1).

Medium resolution uses two grid dots to set a screen dot. When the

Think of when you first
| started drawing. You prob- |
ably used wide crayons.
When you got better, you
began using thin crayons so
that you could draw thin
| lines—lines with better |
| “resolution.” |

99

100

computer sets Dot (0,0), it also sets (1,0).

. High resolution uses only one grid dot to set a screen dot. When the
computer sets Dot (0,0), that's all it sets.

Thus, a diagonal line in low resolution looks more like a stairstep than one
drawn in high resolution:

I
I

Low resolution High resolution

And the number of different screen positions you can use in low resolution
is only one-fourth what you can use in high resolution (see Table 17-3).

R, S e T Ty

! Table 17-3/ Graphics Screen Resolution
Screen Positions Size of
{ Available Each Dot |
I High resolution 256 x 192 D
Medium resolution 128 x 192 H f
Low resolution 128 x 96 E |

Here is a program that shows a box cycle through each mode. Notice
that with each mode the box’s lines go from thick to thin and its colors
go from 2 colors to 4 colors.

5 FOR MODE = @ TO 4

i¢ PMODE MODE 1

20 PCLS

3@ SCREEN 1.1

4@ LINE (75,30)-(125+100) +PSET»B
S50 FOR Y = @ TO S00: NEXT Y

6@ NEXT MODE

70 GOTO 3

This is PMODE’s format. The next chapter shows how to use use the
second parameter, start page.

o

T r——

e

PMODE mode,start page sets the current graphics screen in graph-

ics memory

mode specifies the features you want to use in graphics Keep in mind that the
memory. I_f you omit mode, the computer uses the last graphics screen is always
mode or (if none) Mocfe 2,) full of ““dots.” The issues are

start page specifies on which page in graphics memory to simply how many, what
start a graphics screen. If you omit start page, the com- size, and what color.

puter uses the last start page or (if none) Page 1.
Therefore, if you omit PMODE, the computer uses PMODE

21,
Learned in Chapter 17
BASIC WORDS CONCEPT
i PMODE Selecting a resolution mode
! Selecting color availability
{
|

Notes

101

102

CHAPTER 18

FINDING THE RIGHT PAGES

In writing this book, we've “'stored’”” chapters on pages. Some chapters
require more pages; some less.

In the same sense, Color BASIC stores graphics screens on 1,536-byte
blocks of graphics memory called “pages.” Some screens require more
pages; some less.

Table 18-1 shows how many pages it takes to draw a screen in each mode.
As you can see, a screen drawn in a higher mode (which offers higher res-
olution or more colors) consumes more memory pages than a screen drawn
in a lower mode.

Table 18-1/ Pages Required for GT'aphicsIScEeens.

Screen Pages Required
Mode 4 Screen 4 pages J
Mode 3 Screen 4 pages |
Mode 2 Screen 2 pages |
Mode 1 Screen 2 pages !

Mode 0 Screen 1 page

See what happens if you store the now famous (infamous) ““Lines’’ screen
on different pages.

5 PMODE 1.1

1@ PCLS

20 SCREEN 141

25 LINE (@,0)-(255,191) +PSET

3¢ LINE (@,191)-(255.:0) ,PSET

4¢ GOTO 4@

Focus on PMODE. As you know, the first PMODE parameter tells the
computer to start a Mode 1 screen. And, as Table 18-1 tells you, a Mode 1
screen requires two pages.

The second parameter tells the computer to start the screen on Page 1.
Thus, the 2-page “‘Lines’’ screen is on Pages 1 and 2.

To put the 2-page “Lines” screen on Pages 3 and 4, type:
= PMODE 1.3

Run the program. This shows the same screen, but the screen is in on
entirely different pages.

How about storing two screens—one on Pages 1 and 2, and another on
Pages 3 and 4¢? Change Line 5, delete Line 20, and add Lines 27 and 28.
What you end up with is this:

5 PMODE 1 :1

1@ PCLS stores screen on
25 LINE (2,0)-(255+181) +PSET Pages 1-2

27 PMODE 1.3

28 PCLS stores screen on
30 LINE (@,191)-(2554+0) +PSET Pages 3-4

4@ GOTO 40

The first part of the program starts a Mode 1 screen on Pages 1-2. It “clears””
this screen and puts a line on it.

The next part of the program starts another Mode 1 screen on Pages 3-4. It
clears this screen and puts a line on it.

Run the program and you won't see either screen, because there’s no
SCREEN statement. So add SCREEN:

35 SCREEN 11

Now run the program and you see one screen—the one stored on Pages
3-4.

Whenever Color BASIC displays a screen, it uses your most recent PMODE
instruction to tell it what the ““current graphics screen’ is. In this case, the
most recent PMODE—PMODE 1,3—tells Color BASIC that the current
graphics screen is a Mode 1 screen on Pages 3-4.

Insert another PMODE line just before SCREEN, and Color BASIC displays
a Mode 1 screen on Pages 1-2:

32 PMODE 11

Just for kicks, have Color BASIC display a Mode 2 screen that starts on
Page 2. Any guesses on what you'll see? Change Line 32 to PMODE 2,2
and run the program. Since Mode 2 requires two pages, you see what's
on Pages 2-3. And, since this is Mode 2, you see this screen in 2 colors
with medium resolution.

Flipping Screens

As you know, animators make cartoons by drawing many still pictures and
then “flipping’’ through them.

So here’s the moment you've been waiting for! Th|s program flips screens
to show two lines in motion:

5 PMODE 1.1

1@ PCLS stores Page 1-2 screen
25 LINE (2,0)-(255,191) +PSET

27 PMODE 1:3

28 PCLS stores Page 3-4 screen
30 LINE (@:191)-(2554+0) sPSET

32 PMODE 1.1
34 SCREEN 11
38 FOR I=1 TO ZO@@:NEXT I

displays Page 1-2
screen

You may have noticed that
all the graphics statements
(LINE, PPOINT, PSET, PRE-
SET, PCLS, SCREEN, and
COLOR) produce graphics
on the “current graphics
screen.” The most recent
PMODE statement is what
sets the current graphics
screen.

Did you know that it takes
more than 12,000 individual
drawings to make just one
7-minute cartoon? Wouldn't
a computer be a help there!

103

If you ever have a con-
flict between program
memory requirements and
video memory require-
ments, you'll get a OM
ERROR (Out of Memory).

104

38 PMODE 1.3

49 SCREEN 1:3 displays Page 3-4
42 FOR I=1 TO 2Z@00:NEXT I — screen

44 GOTO 32

Adding Pages

You can use a maximum of 8 pages of graphics memory—Pages 1-8.
However, when you first start up, Color BASIC gives you only half that
amount—Pages 1-4. For example, make this change to “Lines”:

5 PMODE 1.4

Run “Lines” and you get a ?FC Error. You're asking Color BASIC to use
Pages 4-5, but Page 5 is not available!

To remedy the problem, insert Line 4 and you now have all 8 pages.
4 PCLEAR B

PCLEAR lets you reserve from 1 to 8 pages of memory. If you use
PCLEAR, it needs to be your program’s first or second statement (after
CLEAR, if you use CLEAR):

PCLEAR pages reserves pages of graphics memory
pages is the amount of graphics memory to reserve (0-8)

On startup, the computer automatically reserves 4 pages. Use PCLEAR
to reserve more or fewer pages.

You may wonder why we don’t use PCLEAR 8 all the time. The reason:
PCLEAR 8 decreases program memory. Sometimes you need more
program memory; other times you need more graphics memory. PCLEAR
sets the balance.

Up and Down, Up and Down

You probably think your computer is a little crazy, but now we'll prove that
it's a real yo-yo. In fact, you can call this program “"Yo-Yo.” Enter and run
it.

1% PCLEAR B

Z® FOR P=1 TO B

380 PMODE @.P

4@ PCLS

5@ LINE (128+0)-(138:18+(P-1)%13) s+PSET

B® CIRCLE (128+P%*15) +13

7@ NEXT P

80 FOR P=1 TO 8:GOSUB 11@:NEXT P

99 FOR P=7 TO 1| STEP -2:GOSUB 110:NEXT P

i@ GOTO B0

11® PMODE @ P

120 SCREEN 1.0

130 FOR T=1 TO 1@:NEXT T

149 RETURN

With the exception of CIRCLE (see the next chapter), you've already
learned all the features used by this program.

PCOPY

Using PCOPY (“‘page copy’’) you can copy one page of graphics memory
to another. Here is the format for PCOPY:

PCOPY pagel TO page 2 copies pagel to page2

For example, if you want to copy Page 3 to Page 8, type:
PCOPY 3 TO B

One advantage of PCOPY is it can shorten your programs by eliminating
repetition.

Keep in mind PCOPY copies one graphics’ memory page. Unless you're in
Mode 0, this is not one screen. For example, in Mode 4, the above
statement copies only one-fourth of a screen.

DO-IT-YOURSELF PROGRAM 18-1

The following program displays 4 squares that are on 4 different
memory pages on the screen at the same time. Run it, and then shorten
the program using PCOPY.

4 PCLEAR B

5 PMODE 3.4

106 PCLS

11 5CREEN 141

12 LINE (110:20)-(120,:30) sPSET +B
29 PMODE 3.3

21 SCREEN 141

22 LINE (110:20)-(120,30@) +PSETsB
3@ PMODE 32

31 SCREEN 1+1

32 LINE (110:20)-(120:30) sPSET B
49 PMODE 31

41 SCREEN 1.1 :

42 LINE (119:2@)-(129,30) +PSET B
5@ GOTO 5@

105

DO-IT-YOURSELF PROGRAM 18-2

Using LINE and start page, simulate a lightning storm. (Put “crazy
lines’” at random positions on different pages. Then switch back and
forth between pages.)

Learned in Chapter 18

BASIC WORDS CONCEPTS
PCLEAR Reserving pages for graphics
PMODE Selecting a start page
Flipping pages to simulate motion
PCOPY Copying graphics from one page to another
Notes

106

CHAPTER 19

GOING IN CIRCLES

Does all this talk about SCREEN, PMODE, and PCLEAR have you going in
circles? If so, you haven’t seen anything yet!

For example, you can create a full circle or ellipse, or a partial circle or
ellipse using a single statement, CIRCLE. Here is the syntax of CIRCLE:

| CIRCLE (h,w),r,c,hw,start,end draws a circle on the current graphics
screen

h is the horizontal position of the centerpoint (0 to 255).

v is the vertical position of the centerpoint (0 to 191).

ris the radius in screen points.

c is any available color (0-8). If you omit ¢, the computer uses
the foreground color.

hw is the height to width ratio (0 to 255). If you omit hw, the
computer uses 1.

startis the starting point (0 to 1). If you omit start, the computer
starts at 0.

end is the ending point (O to 1). If you omit end, the computer
uses 1.

If the start point is equal to the end point or if you omit both the
/ start and the end, the computer draws the complete
! ellipse.

To draw a circle, you need only the centerpoint (h,v) and the radius (r),
which is the distance from the center in points.

First, count over on the h-axis, then down on the v-axis to locate the
desired center. Then, once you specify that point, indicate the circle’s
radius. The largest radius that fits on the screen is 95. If the radius is larger
than 95, the circle “flattens” against the edges of the screen.

Bring your “Lines” program back into service.

5 PMODE 11

1@ PCLS

20 SCREEN 11

23 LINE (0,0)-(2535,+191) »PSET
30 LINE (2,191)-(255:0) sPSET
49 GOTO 490

107

Delete Line 25 and change Line 30 as follows:
5 PMODE 1,1 30 CIRCLE (128:896) ,95

ég ;E:;EEB'I 51 Run the program. Your TV should display a somewhat scruffy, orange
30 CIRCLE (128,986) circle on a buff background. Are you wondering why the circle isn’t truly
195 round? Look at Line 5 and you’ll see; the computer is in Mode 1 (medium

40 GOTO 40 resolution).

Your program should read:

Change Mode 1 to Mode 4 (high resolution) as follows:

5 PMODE 4.1

1 PCLS

20 SCREEN 11

30 CIRCLE (128.:96) :95
49 GOTO 40

Run the program. Now that’s a circle! (It should be a buff circle on a black
background.)

DO-IT-YOURSELF PROGRAM 19-1

Using the program above, generate a bull’s eye. You can do this one of

two ways:

° Add a separate program line for each concentric circle but use a
common center (h,v coordinate).

. Usea FOR . .. NEXT loop with a STEP 10 to have the computer
do the work for you.

DO-IT-YOURSELF PROGRAM 19-2

Do you still have the program for the house you built? How do you
expect to get into the house without a doorknob? Use CIRCLE to put a
doorknob on the front door. Your Graphics Screen Worksheet is
helpful in locating the exact point you need.

Note: If you use medium or low resolution, a circle small enough
to serve as a doorknob does not have much detail. Run the pro-
gram in Mode 4 for more detail.

Coloring the Circle
After you decide on the circle’s radius, choose its color. Using 2-color

mode, you haven’t much choice, but using 4-color mode (Mode 1 or 3),
you'll find the color option an exciting feature.

108

Your program should read:

5 PMODE 1:1

198 PCLS

20 SCREEN 1.1

30 CIRCLE (128:96) .83
4@ GOTO 4@

First, make the circle a more manageable size:
30 CIRCLE (12ZB:+9B) 30

Now, for a little variety, change the color to cyan:
30 CIRCLE (128.:96):32:06

It's as easy as that! In fact, you can change the circle’s color to any of the
available colors.

Putting on the Squeeze

Did you ever take a Hula-Hoop, bicycle tire, or buggy wheel and squeeze
it with both hands to form an ellipse?

Similarly, you can change circle on your screen into an ellipse by using the
height/width ratio (hw) option.

HEIGHT WIDTH

The width of the ellipse is equal to the radius. The height is determined by
hw. If hwis 1, the computer draws a circle. If hw is greater than 1, it draws
anellipse that is higher than it is wide. If hwis lessthan 1, itdraws an ellipse
that is wider than it is high. For example, this program draws a circle:

5 PMODE 441

1@ PCLS

20 SCREEN 11

30 CIRCLE (12B,:9B) :+30 1
49 GOTO 40

If however, you change hw as shown here, the program draws a vertical
ellipse:

30 CIRCLE (128:9B6) +3@ s :3
If you change hw as shown here, it draws a horizontal ellipse:
3@ CIRCLE (128+9B) 2304 +.25

if hw equals 0, then the “ellipse’” becomes “infinitely’”” wider than it is
high. In other words, it becomes a horizontal line.

As hw increases past 1, the “ellipse” approaches a vertical line.
Change Line 30 in the following ways and run the program:

30 CIRCLE (128:9B) +30+:0

30 CIRCLE (128,96)1+304+,100

rNotfc-‘;‘ that your CIRCLE

statement does not include

the color code. Omitting the
| code tells the computer to
E use the foreground color.
| You must include the com-
| ma, though, to indicate to
the computer that you are
omitting the c and that the
. number specifies the hw
| ratio.

i You could say the circle is
| finally on the straight and
! narrow path.

When you use 0, imagine
you're looking ata coin from
the edge, and you’ll have a
good idea of what we mean.

109

110

From Start to Finish . . .

Suppose you want to draw only part of a ellipse (an arc). To do this, you
must list the ellipse’s center point (h,v), its radius (r), and its height/width
ratio (hw). If you wish, you may precede hw with the color (c).

Note: To draw an arc, you must specify hw. For a normal arc, use
hw 1. '

From the above information, the computer knows the location, width, and
height of the ellipse. Now you can tell it how much of the ellipse to draw.

To do this, specify the start of the arc (0 to 1) and end (0 to 1) of the arc,
following the chart below. Keep in mind that the computer always draws

clockwise. 75
.50 0
25
Suppose, for example, you want to draw this arc:
75
25

To do so, use this statement:
3@ CIRCLE (128,:96) +30 :1+,.25,.,73

Now change the statement to draw this arc:
75

.25
Is this your new Line 30?

30 CIRCLE (128,96)+30:1::75+.:25

DO-IT-YOURSELF PROGRAM 19-3

Has night fallen on the house you built? If so, you might want to shed |
some light on the subject by putting a crescent moon in the corner. |
This requires two intersecting arcs and some trial and error on your |
part. I

DO-IT-YOURSELF PROGRAM 19-4

Maybe it’s cold, as well as dark, around your house. If so, build a fire in !:"i
the fireplace and show smoke coming out the chimney. (Use CIRCLE |
to generate a spiral that simulates the smoke.) '

Learned in Chapter 19

BASIC WORDS CONCEPTS

CIRCLE Drawing a circle or an ellipse
Coloring a circle or an ellipse
Drawing an arc

Notes

111

CHAPTER 20

THE BIG BRUSH-OFF

112

You might think we've forgotten this is a Color Computer. So far, it's been a
little dab here and a splotch or two there. You'll never create a masterpiece
that way! Well, it's time to loosen up a little and paint the town, if not red,
then at least a bright orange.

The Extended Color BASIC graphics function PAINT lets you ““paint’” any
shape with any available color.

Here is the syntax for PAINT:

E PAINT (h,v),c,b paints the current graphics screen

h is the horizontal position (0 to 255) of the point at which
painting is to begin.
i v is the vertical position (0 to 191).
' c is the color (0 to 8).
b is the border color at which painting is to stop (0 to 8).

L i

If the computer reaches a border other than that of the specified color, it
paints over that border.

Change the ““Lines’’ program as follows:

3 PMODE 3:1

1@ PCLS

20 SCREEN 1.1

30 LINE (@,0)-(255,191) ,PSET
48 LINE (@,191)-(255,0) +PSET
590 CIRCLE (128.:96) :9@

B@ PAINT (135:125) :8:8

7@ GOTO 7@

Before you run the program, can you predict the results? Lines 30 and 40
make the intersecting lines. Line 50 generates a circle the center of which is
at the point where the two lines intersect. That part should be easy, but
what about PAINT in Line 60? .

If you guessed the computer goes to screen position (135,125) and pai'nts
with orange until the paint reaches an orange border, you're right!

Delete Line 30 and then run the program. Now that you redefine the
borders, the computer paints half the circle.

DO-IT-YOURSELF PROGRAM 20-1

Can you paint the entire circle? You can do this two ways. One
involves adding a line; the other involves deleting a line.

By the way, did you notice the computer’s mode and color set? Mode 3 isa
4-color mode, and Color Set 1 gives you buff, cyan, magenta, and orange.

Stay in Mode 3, but change the color set (SCREEN 1,0) and run the
program. Without changing any other lines, you should get a red circle
(border) on a green background.

Toavoid confusion about color, change the PAINT color to fit the color set:
6@ PAINT (135,128):2.4

Now when you run the program, the semicircle should be painted yellow
(Code 2) until the computer encounters the red (Code 4) border.

DO-IT-YOURSELF PROGRAM 20-2

f Do you still have your house? It probably looks a little plain, maybe
. even shabby. Why don’t you spruce it up with some paint?

| DO-IT-YOURSELF PROGRAM 20-3

Add a garage to your house, then use PAINT to raise and lower the
garage door. Since the painting action always goes up first, this takes a
little refining on your part. Add a delay before and after the opening.
| (With CIRCLE, add the sun.) By the way, did you notice the computer’s
. mode and color set? Mode 3 is a 4-color mode, and Color Set 1 gives
you buff, cyan, magenta, and orange.

Learned in Chapter 20

BASIC WORDS CONCEPTS
PAINT Painting any figure

Remember, you can paint |
using only those colors that
are available in your mode

and color set.

happened?

But you didn’t specify red
lines and red paint! Do
you have any idea what

When the computer is in a

4-color mode and vyou
specify a color it can’t sup-
ply, the computer subtracts
4 from Codes 5 through 8.

(It interprets 0 as 3.)

113

114

Notes

CHAPTER 21

DRAW THE LINE
SOMEWHERE

You already know how to create lines, ellipses, and boxes. Now how
would you like to learn a shortcut for doing some of those things? The
shortcut is DRAW, which lets you draw a line (or series of lines) by
specifying direction, angle, and color—all in the same program line! Here
is the syntax of DRAW:

DRAW line draws a shape on the current graphics screen
lineis a string expression that may include the following motion
commands, modes, and options:

Motion Commands

M = Move the draw position
Up i
Down i
Left

Right

45-degree angle

135-degree angle

225-degree angle

315-degree angle

Execute a substring and return

Modes

oo Wy gy

B T E A

w >N
LT
>
=3
o 5]
o

Options

No update of draw position
Blank (no draw, just move)

Note: If line is a string constant, you must enclose it in quotes.

Always insert the B option directly before the M motion
command; otherwise, unwanted lines may appear.

R T

e T e T T T R TR T

115

This program probably has
replaced your dog as your
best friend.

S PMODE 3:1

19 PCLS

2@ SCREEN 1+1

25 DRAW "BM1Z28.963
U253 R253% D253
Laa"

49 GOTO 40

To make the program easier
to read, we've separated
each motion statement with
a semicolon (). You
needn’t do this. You must,
however, always separate
the th,v) coordinates with a

comma f,).

116

Earlier you learned how to create a box using LINE. To do this, you may
have had to do some difficult figuring with the Graphics Screen Worksheet
to locate the necessary start and end points.

With DRAW, you have to locate only the start point and then tell the
computer in which direction to draw and how far to do so. If you omit the
start point, the computer starts at the last DRAW position or—if you
haven't previously used DRAW—at the center of the screen.

Use your “Lines” program to try out DRAW. Delete Line 30 and change
Line 25 to the following:

25 DRAW "BM1ZB,9B3U233RZS5DESILZB"

Presto! Can you guess why the square’s lower left corner is at (128,96)¢
Look at the first two numbers inside the quotes.

The motion command, M, tells the computer at which point to later begin
drawing.

M h,v tells the computer at which point to begin drawing

h is the horizontal position (0 to 255).
v is the vertical position (0 to 191).

Note: Always preface M by the letter B; if you do not, |
unwanted lines appear. '

The above program tells the computer to start drawing at (128,96), draw up
(U) 25 points, right (R) 25 more, down (D) 25 more points, and finally left
(L) 25.

Note: If you omit the line’s length, the computer uses 1 as the
length.

Setting the Square on Edge
(Diagonal Lines)

Instead of drawing horizontal and vertical lines, stand the square on one of
its corners. To do this, substitute E, F, G, and Hfor U, R, L, and D in Line 25:

25 DRAW "BM1Z2ZB,9BsEZ5iFZ53iGE5IHZ3"

This DRAW starts at (128,96) too. Instead of going up, however, the first
line angles off at 45 degrees; the computer draws the next 3 lines at their
designated angles.

If you arein Mode O or 1 and use E, F, G, or H to generate a line that has an
odd-number length and at least 1 odd-number coordinate (h,v), Lines F
and H have a slight “hitch’” at the midpoint. If both coordinates are
even-numbered, Lines E and G have the “hitch.”” This is normal.

DO-IT-YOURSELF PROGRAM 21-1

You already know your computer is the star of the show, but can you |
prove it by drawing a star? Use the DRAW motion commands for both |
perpendicular and diagonal lines.

Absolute M v Relative M

Suppose you draw a square and then want to draw another one nearby.
You know exactly how far away you want the second square to be, but
don’t want to have to locate the coordinates (h,v).

Another form of the M command lets you specify “relative’” motion instead
of “absolute” motion. So far, you have used absolute motion; you have
specified points in terms of their coordinates (h,v). Using relative motion,
you can specify points in relation to the current point (the point last drawn).

Here's the syntax for relative motion:

Y sign h-offset, v-offset lets you specify points relative to the cur-
rent point

i h-offset is the distance to move horizontally from the current
position. If you precede it with a plus sign (+), the
h-position increments by the specified amount. If you
precede it with a minus sign (-), the h-position
decrements.

v-offsetis the distance to move vertically from the current. If you
precede v-offset with a plus sign (+) or if you omit the
sign, the v-position increments by the specified amount. If
you precede it with a minus sign (-), the v-position
decrements.

For example, if you wish to create a second box at a position relative to that
of the first box in the (redefined) “’Lines”” program, you might add this line:

3@ DRAW "BM+15+153UZSIR2Z5iD255L25"

When the computer executes Line 30, the current draw position is
(128,96), which is the the last draw position in Line 25. So the lower left
corner of the new square is at (238+15,96+15) or (255,111).

Change Line 30 as follows:
30 DRAW "BM+15,-15iUZ5iRZ53iD255L25"

Run the program. The start point of the new square is (128 +15,96-15) or
(143,81).

DO-IT-YOURSELF PROGRAM 21-2
After all this heated activity, you're probably ready to cool off, so why
| don’t you use DRAW to create an ice cube?

You can generate the entire cube using DRAW, or you can incorporate
| a couple of LINE commands within the program. Try to use both
absolute and relative motion.

Tipping the Scales

What if the figures you draw turn out to be too big or too small?

The solution’s easy. Your computer has a built-in function that lets you
“scale” (up or down) any display generated by DRAW. All you have to do

Absolute motion: “Go to
the corner of 53rd Street
and Bomber Lane.”

Relative motion: "“Go 2
blocks down, take a right,
and go 1 more block.”

When you use the scale-
down option, the computer
rounds the resulting line
length to the nearest whole
number, if it is not already
a whole number.

For example, “S2U25R250D
25L25" results in a 12-1/2
x 12-1/2 square. The com-
puter draws a 13 x 13
square.

117

is use the Sx command in the string.

E Sx lets you scale a display [

| . o i
' x is a number in the range 1 to 62 that indicates the scale |
factor in units of 1/4 as shown here:

{ 1/4 scale
2/4 scale .
3/4 scale i
4/4 (full) scale
5/4 (125%) scale i
8/4 (double) scale
12/4 (triple) scale

= 20 W Ja b =

L]

®
~

If you omit x, the computer uses 4 (4/4=1).

e e it == s . e e

After you enter an Sx command, the computer scales all absolute and
relative motion commands accordingly until you enter another.

Make your refined “’Lines” draw a single square again. Do this by deleting
Line 30 and changing Line 25 as follows:

23 DRAW "SZ3iFM1ZB+96G3UZ5iR253D255L2S"

Run the program. The square in the lower left corner should be half the size
you specified.

To see how small or large a square can be, run the following program:

3 PMODE 4.1

1@ PCLS

2@ SCREEN 1.1

25 FOR BCALE = 1 TO B2

30 8% = "§" + STR$(SCALE) + "3"

35 DRAW S$¢ + "BM10,100UZ@RZQD20LZQ"
4@ NEXT SCALE

°@ GOTO 50

Don’t make the mistake of thinking that the smallest square is the one
specified in Line 35. The one we specified is the fourth one from the edge.

Color Me.. ..

DRAW's C option lets you specify the color of a particular line.

118

First, list the “‘Lines’” program:

3 PMODE 31

19 PCLS

20 SCREEN 11

32 DRAW "SZ2iBM1ZB,9B6iU253R2D5DZ55LES"
49 GOTO 4@

Go back to full scale either by changing S2 to S4 or by deleting S2. Then,
just inside the first set of quotation marks in Line 30, insert:

CB

Run the program. Does it display a cyan square on a buff background?

Replace the C6 (in program Line 30) with C8 and run the program. Did the

square turn orange?

C must take the following form:

Cx lets you specify a line’s color

x is the color code (0 to 8). If you omit x, the computer uses the
foreground color.

You can insert Cx anywhere inside the DRAW statement. All actions that
follow are the color you specify. For instance, change Line 30 to read:

30 DRAW "C83 BM1ZB,9BiU233iR235
CEY DZSiLZ3"

Run the program. The program displays a 2-color square. The first 2 lines
drawn are orange. The second 2 are cyan.

What’s Your Angle?

Another option that is available with DRAW is A. This option lets you
specify the angle at which a line is to be drawn. After you include A in the
DRAW command, the computer draws all subsequent lines with the angle
displacement specified by Ax until you specify otherwise.

Your program should now read:

3 PMODE 31

1@ PCLS

20 SCREEN 1:1

30 DRAW "CGiBM128,;9G35UZ253
REZS3iDZ535LE3"

49 GOTO 49

If you want to “‘erase” a
fine, draw another line on
top of it using the back-
ground color.

119

120

Here is the syntax for the A command:

Ax lets you specify the angle of a line
xis the angle code (0 to 3). All angles are measured clockwise. |

)

P

0 degrees

= 90 degrees
180 degrees
270 degrees

I

b b =

It you omit Ax, the the computer uses AQ. '

To illustrate this, change program Line 30 to read:
3@ DRAW "A@IBM1IZEB,9GB5UZ23"

Run the program. Your screen displays a vertical line that is 25 points long.
Now change Line 30:

3¢ DRAW "A13iBM1Z28,9B63UZ3"

Run the program. The line is now horizontal.

Just Shootin’ Blanks

If you want the next line you draw to be a “’blank’* or an invisible line,
include the B option.

For example, let’s say you are drawing letters of the alphabet and are ready
for the letter C, which is nothing but a square with the right side blank.
Change Line 30 as follows so the program generates such a figure:

30 DRAW "BM12B8,9B63UZ53iRED iB iD25iL25"

Run the program. Remember, only the line immediately following the B is
blank.

DO-IT-YOURSELF PROGRAM 21-3 l
Print your name on the screen using DRAW. This means you'll have to
stay in the graphics screen. Sure, it would be easier to write your name
on the text screen, but you can’t have “true” text and graphics at the |
same time.

What! More Options?

Another of DRAW’s many features is N, the “‘no update’ option. N tells the
computer to return to its original (current) position after it draws the next
line. To see this, change Line 30 to read:

30 DRAMW "M1Z28:96% NI U255 N3 RZ5F NJ
D253F Nj§ LZ53"

Run the program. The computer draws a 25-point line straight up from
(128,96). It then returns to (128,96), draws the next line, returns, draws the
next, and so on. As a result, four lines radiate from the center of the screen,
each in a different direction (up, right, down, and left).

|
|
i
i

DO-IT-YOURSELF PROGRAM 21-4

Using DRAW's N option (and CIRCLE), have the computer draw a pie
that has 8 pieces. Once you've done that, cut out a piece of the pie and
put it over to one side.

g s e TearmTy—

String Constants v String Variables

As stated earlier, the string following DRAW can be either a constant—as
in the previous examples—or a variable.

To use a string variable, precede the DRAW statement with a program line
that identifies the variable as a string; then substitute the string for the
quoted material in DRAW. For example, add Line 25 and change Line 30
as follows:

23 A%$="BM1Z2B,9BiCBIUZ5iRZ5iD25iLEE"
30 DRAMW A%

Run the program. The computer displays an orange box (25 x 25), the
lower left corner of which is in the center of the screen.

Extended Color BASIC offers a variation on this, called the “execute” (X)
action. While you execute a DRAW routine, the execute action lets you
execute another DRAW string, then return to and complete the first
operation. To do this, leave Line 25 as is so that it defines A$; then change
Line 30. The two lines read:

25 A$="BM1ZB,96:CEBUZ5R
39 DRAW "BMIS3@IUZSIRES

Run the program. The computer starts drawing at (95,50) a line that
extends up (U25) and then right (R25). It then executes A$ so that it draws a
25 x 25 square, starting at (128,96). After executing A$, it returns to the
original (current) string and completes its execution (D25,1L25).

e D

DO-IT-YOURSELF PROGRAM 21-5

Do-It-Yourself Program 21-3 shows that you can simulate text (let-
ters) on the graphics screen by drawing the letters. Use DRAW to |
create all 26 letters of the alphabet. Store the DRAW commands in
strings. Then use the “execute” (X) action to arrange the letters into
words.

a macm L L A L e T T s S B T i ez |

[= e s T TR T L TR EERIT ARSI Lo = F ek e

DO-IT-YOURSELF PROGRAM 21-6

Do you still have your house? If so, load the program again and use
DRAW to make the front doo: open and close.

s S = e S e

f
|
[

| RASIRK$IHCS

Does that mean it's a
drawstring?

A semicolon must always
follow the dollar sign (even
though the other semi-
colons are not necessary):

121

122

Learned in Chapter 21

BASIC WORDS CONCEPTS

DRAW

Drawing visible lines

Drawing invisible (blank) lines

Scaling figures to size

Coloring lines

Returning the draw to its original position
Using string variables to draw

Executing a second draw in the middle of the
firss

Notes

CHAPTER 22

GET AND PUT:
THE DISPLAY WENT
THAT ARRAY

In previous chapters, you've learned a few ways to move figures from one
screen to another, but none is very efficient. Have no fear; there is a better
array (groan). It has to do with GET and PUT.

Using these statements, you can ‘“gel’ a rectangular area from the screen,
store its contents in an ““array’’ (an area of memory), and then “put” it back
anywhere you want on the screen. This is the best method for simulating
motion.

A who? A what? Arrays arej;
covered in Part Ill, later in |
this manual. —l‘

We use the term “‘rectan- |
gle” to refer to the area |
that contains the graphic |
display. Of course, you |
can't actually see the rec- :
tangle. You’'ll have to visu- |
alize it. Here’s an |
illustration to help you:

The formats for GET and PUT are:

| GET h1,v1-h2,v2,array, G gels a rectangle from the current graph-
ics screen and stores it in an array

h1,v1 is the rectangle’s upper-left corner,

h2,v2 is the rectangle’s lower-right corner.

array is an area in memory that stores the rectangle.

G stores the array in full graphic detail. It is required when |
using high resolution (Mode 4 or Mode 3 with colors)
or when using the PUT action parameters. Otherwise, |
garbage appears on your screen.

| PUT h1,v1-h2,v2,arrayaction puts a rectangle, stored in an array,
' on the current graphics screen

hi,v1 is the rectangle’s upper-left corner.

h2,v2 is the rectangle’s lower-right corner.

array is an area in memory where the rectangle is stored.

action (shown on Table 22-1) tells the computer what to do
with the points stored in the rectangle.

Note: Be sure the computer is in the same PMODE for GET |
as it is for PUT. Otherwise, you may not “'put’”” what you |

i

got!

o

123

How large a rectangle you
can store in an array de-
pends on how much mem-
ory you have. Each point,
when stored in an array,
consumes 5 bytes of mem-
ory. In a 16K RAM system,
you can store no more than
1400 points in an array. If
your program is long, you
may have to use a smaller
array.

124

Type and run this program to see how GET and PUT work:

5> PCLEAR 4

i@ PMODE 3:1

15 PCLS

29 SCREEN 1.1

23 DIM V(20,20)

30 CIRCLE (20:2@) 18

3% GET (10,180)-(30:30) sy

4@ PCLS

42 FOR DLAY = 1 TO 3@0@: NEXT DLAY
43 PUT (11@,11@)-(132:130) U

3@ FOR DLAY = 1 TO 30@: NEXT DLAY
6@ GOTO G@

The program draws a circle on one part of the screen and then moves it to
another. To do this, the computer:

1. Creates an array named V in memory (Line 25). Array V is big enough
to store a 20 X 20 rectangle.

2. Draws a circle on the screen (Line 30).

3. Gets a 20 X 20 rectangle containing the circle and stores it in the
Array V (Line 35).

4. Clears the screen (Line 40).
5. Puts the 20 X 20 rectangle (stored in Array V) back on the screen.

Storing the Rectangle

As you can see from the above program, GET and PUT use an array to store
the rectangle. So, before you use GET or PUT, you need to create this array.

The DIM statement lets you do this.

PSS e

meo v g e s e == e

DIM array(length, width) creates an array for storing a rectangle
the size of length X width points

Note: DIM should be one of the first lines in your program (after
CLEAR and PCLEAR, if you use them).

P

How large does the array need to be? This depends on how large a
rectangle you want to “‘get” or “‘put’’:

Width = h2 - hi
Length = v2 - v

For example, the above program’s GET statement uses (10,10) and (30,30)
to specify a rectangle. Thus, the rectangle is 20 X 20: It has a width and
length of 20. The PUT statement uses the same size rectangle: 20 X 20.

Put Not What You See

You've now put a rectangle on the screen one way—with the PSET ac-
tion. (When you don't specify another action, the computer uses PSET)
There’s more than one way, though, to put rectangles on the screen.

To see how the other actions work, start by running this program. It puts 15
rectangles on the screen with the PSET action.

5 PCLEAR 4

19 DIM YV (38,30)

15 PMODE 2.1

20 PCLS

25 SCREEN 11

3¢ CIRCLE (128.,96) .30

35 PAINT (1E28B,95) 2.4

49 PAINT (1284+97) 4344

45 GET (98.:81)-(128:111) V.G
50 PCLS

53 FOR I = 15@ TO0 1 STEP -10
B@ PUT (I14+81-I1/5)-(I+60:111-1/5) +Y+PSET
BS NEKXKT 1

70 GOTO 7@

PSET sets and resets each pointas itis in the array rectangle. Each rectangle
it puts on the screen is the same as the one stored in the array.

Now change Line 60 in various ways to try other actions. First, try PRESET.
6@ PUT (I4+81-1/85)-(I1+60+111-1/5) sV +PRESET

PRESET sets and resets the reverse of each pointin the array rectangle. Each
rectangle it puts on the screen is the reverse of the one stored in the array.

Try the OR action:
6@ PUT (I4+B1-I/5)-(I1+G0+111-1I/5) :V,:0R

OR sets each point that's either (1) set in the array rectangle or (2) already
set in the position where it’s putting the screen rectangle. Each rectangle it
puts on the screen has all points set that are stored in the array plus what is
currently on the screen.

For a strange effect, try the NOT action:
6@ PUT (I81-I/5)-(I1+B@,111-1/53) V,NOT

NOT sets and resets the reverse of what's on the screen. (NOT doesn’t care
what's stored in the array.) Each rectangle it puts on the screen is the
reverse of the previous one.

Try the AND option with this program, and you won’t see anything:
6@ PUT (I+B1-1/35)~-(I+B0+111-1/5) sU,AND

AND sets each point that (1) is set in the array and (2) is already set on the
screen in the position where it's putting the rectangle. Any points that don't
meet both of those conditions are reset. In this case, each rectangle AND
puts on the screen has all points reset—you see nothing.

If the computer puts garbage
on your screen, perhaps you
have omitted the G option
with GET.

125

126

This is a summary of each action:

Option
PSET
PRESET

AND

OR

NOT

Function
Sets each point that is set in the array.

Resets each point that is set in the array; sets each
point that is reset in the array.

Compares each pointin the array rectangle with the
screen rectangle. If both are set, the computer sets
the screen point; if not, it resets the screen point.

Compares each point in the array rectangle to the
screen rectangle. If either is set, the computer sets
the screen point.

Reverses the state of each point in the screen rec-
tangle regardless of the array rectangle’s contents.

DO-IT-YOURSELF PROGRAM 22-1

Use GET and PUT to send a spaceship up the screen and across its
“outer limits.”” You might want to add a few asteroids and aliens to
| make the voyage more exciting!

BASIC WORDS
GET
PUT

Learned in Chapter 22 i
CONCEPTS
Storing a screen display in an array

Returning the display to the screen in either
the same or a different position

Determining the state of the returned points
of the display

Notes

CHAPTER 23
A NEW KIND OF POINT

As you recall from the SCREEN and PMODE chapters, your computer has
two kinds of video memory—text and graphics. And it uses these two
memories to create two kinds of screens—text and graphics.

All the extended graphics statements (such as LINE, CIRCLE, PPOINT, and
PMODE) create graphics screens using the massive power of graphics
memory. This lets you draw exciting, high-resolution, and fast-moving
images.

There are two kinds of images, though, that you can't produce on a
graphics screen:

An image that uses all 9 colors (You can use no more than 4 colors on
a graphics screen.)

An image that uses text, as well as pictures (You cannot print text on a
graphics screen.)

To produce these kinds of images, you need to draw pictures on a text
screen. Extended Color BASIC has 3 statements you can use for this
purpose:

SET—sets a dot on your text screen
RESET—resets a dot on your text screen

POINT—tells what color a dot is on your text screen.

If these statements remind you of PSET, PRESET, and PPOINT, that's no
accident. SET, RESET, and POINT perform the function on the text screen
as PSET, PRESET, and PPOINT perform on the graphics screen.

The analogy ends there, though. There are no text screen equivalents to
such powerful statements as DRAW, PAINT, and PMODE. On a text
screen, you can draw only one dot at a time.

First make your screen black:
10 CL5(8)
Now set a dot—a blue one—on the top-left corner of your text screen. Type
and run this program:
2@ SET(2.,0.,3)
3@ GOTO 3@
Set another dot—a buff one—on the bottom-right ¢orner of your screen.
20 SET(B3:31:3)
As you may see, you do not use the 256 X 192 graphics grid to set dots on

your text screen. Instead, you use a 31 X 63 grid called the SET/RESET grid
(shown in the back of this book).

127

When you reset a dot on the

text screen, the computer |

makes the dot black.

e

128

Setting Two Dots

To set two dots on a text screen, you need to plan. To find out why, run
a few programs. First, type and run this:

1@ CLS(@)

20 SET(32,14:3)
30 SBET(33:14:3)
49 GOTO 40

You should now have two blue dots—side by side—in the middle of your
screen. Change the color of the right dot so you'll have one blue and one
red dot. Type:

30 SET(33:14.:4)
Run the program again. This time, both dots are red.

Look again at the SET/RESET grid. Notice that the darker lines group the
dots into “blocks!” Each block contains 4 dots. For instance, the block
in the middle of the grid contains these 4 dots:

Horizontal Vertical
Position 32 14
Position 33 14
- Position 32 15
Position 33 T5

Each dot within a block must either be:

the same color
or

black

The above program asks the computer to set two different-colored dots (red
and blue) within the same block. Since the computer can’t set them in
different colors, it sets them both the second color: red.

Type and run this program:
30 SET(34:14.:4)

Since the dot in Position 34, 14 is in a different block, the computer
can set the two dots in different colors.

The Computer’s Face

Drawing pictures on the text screen will seem primitive to you after using
statements such as CIRCLE, DRAW, and PAINT. But if you want pictures
and text, you can use the following program as a guide.

Run this program, and you see computer’s face and text on the same
screen. SET and RESET draw the picture (using the SET/RESET grid) and
PRINT @ prints the text (using the PRINT @ grid).

S CLS(®)
7 PRINT @ 397 "HELLO"3
_»1@ FOR H = 15 TO 48
" 20 SET(H5,5)
. 30 SET(H20,5)
N4 NEXT H e AL

=

5@ FOR W = 5 TO 20
G@ SET(13:V,5)

70 SET(48:V,5)

8@ NEXT U

90 SET(32:13+8)

100 FOR H = 2B to 3B
119 SET(H:16:4)
120 NEXT H

130 SET(25:+10:3)
140 SET(38:19:3)

158 RESET{(38:10)
i6@ GOTO 149

Notice that this program is able to draw 5 colors on one screen—and could
actually draw all 9 colors.

These are the formats of SET, RESET, and POINT:

SET h,v,c sets a point on the text screen

h is the horizontal coordinate (0-63)
v is the vertical coordinate (0-31)
¢ is the color code (0-8)

RESET h,v resets a point on the text screen

h is the horizontal coordinate (0-63)
v is the vertical coordinate (0-31)

POINT h,v tells what color a point is on the text screen

h is the horizontal coordinate (0-63)
v is the vertical coordinate (0-31)

If You Have the Joysticks . ..

If you have joysticks, connect them now by plugging them into the back of
your computer. They fit in only the correct slots, so don’t worry about
plugging them into the wrong places.

Now run this short program to see how joysticks work:

1@ CLS

20 PRINT B @, JOYSTK(@) 3
3@ PRINT @ 3, JOYSTK(1)3
49 PRINT @ 1@, JOYSTK(Z2)3
5@ PRINT @ 15+ JOYSTK(3)i

6@ GOTO Z0

See the 4 numbers on your screen? They're the horizontal and vertical
positions of the 2 joysticks’ ““floating switches.”

Grasp the right joystick’s floating switch. (The joystick connected to the
RIGHT JOYSTICK jack on the back of the computer.) Keeping it in the
center, move it from left to right. The first number on the screen changes
from 0 to 63, going through all the intervening numbers.

Notice we've changed Line
50—the COTO line.

Be sure to type the semi- |
colons at the ends of Lines

20, 30, 40, and 50.

129

| The second or fourth num-
| bermay change also, but not
from 0 to 63.

| This program uses joysticks

| with text screen pictures.

| You canjustas easily use the

| joysticks with graphics
screen pictures.

130

Move the left joystick’s floating switch from left to right. The third number
on the screen changes.

Now move the floating switches up and down, keeping them in the center.
Moving the right joystick up and down changes the second number from 0
to 63. Moving the left joystick up and down changes the fourth number
from 0 to 63.

This is how the computer reads the joysticks’ positions:

JOYSTK(0) and JOYSTK(1) read the right joystick’s positions:
JOYSTK(0) reads the horizontal (left to right) coordinate.
JOYSTK(1) reads the vertical (up and down) coordinate.

JOYSTK(2) and JOYSTK(3) read the left joystick’s positions:
JOYSTK(2) reads the horizontal coordinale.

JOYSTKI(3) reads the vertical coordinate.

Whenever you read any of the joysticks, you must read JOYSTK(0). To find
out for yourself, delete Line 50 and run the program. It works almost the
same, except it doesn’t read JOYSTK(3) — the vertical position of your left
joystick.

Delete Line 20 and change Line 60:
6¢ GOTO 30

Run the program. Move all the switches around. This time the program
doesn’t work at all. The computer won’t read any coordinates unless you
first have it read JOYSTK(0). Type these lines and run the program:

20 A = JODYSTK(@)
6¢ GOTO 20

Although the computer’s not printing JOYSTK(0)'s coordinates, it's still
reading them. Because of this, it’s able to read the other joystick
coordinates. Whenever you want to read JOYSTK(1), JOYSTK(2), or
JOYSTK(3), you first need to read JOYSTK(0).

Painting with Joysticks
Type and run this program:

1¢ CLS(@)
»20 H = JOYSTK(@)
30 U = JOYSTK(1)
4@ IF W » 31 THEN U = U - 3F
80 SET(H:UV:3)
9¢ GOTOD 20

Use the revolving switch of your right joystick to paint a picture. (Move the
switch slowly so that the computer has time to read its coordinates.)

Line 20 reads H—the horizontal position of your right joystick. This can be
a number in the range 0 to 63.

Line 30 reads V—its vertical position. This also can be a number in the
range 0 to 63. Since the highest vertical position on your screen is 31, Line
40 is necessary: It makes V always equal a number in the range 0 to 31.

Line 80 sets a blue dot at H and V.

Line 90 goes back to get the next horizontal and vertical positions of your
joysticks.
This uses only the right joystick. Perhaps you could use the left one for
color. Add these lines and run the program:

50 C = JOYSTK(Z)

6@ IF C < 31 THENC = 3

79 IFC » =31 THENC = 4

80 SET(H:V:C)

Move your left joystick to the right, and the computer makes C equal to 3;
the dots it sets are red. Move it to the left, and the computer makes C equal
to 4; the dots it sets are blue.

Want to use your joystick buttons? Add these lines to the program:

18@ P = PEEK(B3:Z82)
11@ PRINT P
12¢ GOTO 100
Now type:
RUN 1@@ (ENTER

This tells the computer to run the program starting at Line 100. Your
computer should be printing either 255 or 127 over and over.

PEEK tells the computer to look at a certain spot in its memory to see what
number’s there. Line 100 looks at the number in Position 65280. As long as
you're not pressing either of the buttons, this spot contains the number 255
or 127.

Press the right button. When you press it, this memory location contains
either the number 126 or 254.

Press the left button. This makes this memory location contain either the
number 125 or 253.

Using this information, you can make the computer do whatever you want
when you press one of the buttons. We'll make it go back to Line 10 and
CLS(0) (clear the screen to black) when you press the right button. Change
Lines 110 and 120:

i1ie IF P 126 THEN 1@
120 IF P 234 THEN 10

Delete Line 90 and add this line:
130 GOTO 20

Run the program and start “‘painting.” Press the right button when you
want to clear the screen and start again.

nn

If you press the buttons

| when you're not running |

the program, you'll see |
@ABCDEFG or HIJKLMNO. |

i Some joysticks will not read
six “’blocks” in each of the
| four corners of your screen.

131

Learned in Chapter 23

BASIC WORDS

SET
RESET
JOYSTK
PEEK

Notes

132

CHAPTER 24

PLAY IT AGAIN, TRS-80

So you think your computer is a good artist, huh? Well, you haven’t heard
anything yet! Wait until you find out about its musical talents! Ready? Then

let’s get down to work and PLAY.

Your computer’s PLAY function allows you not only to play music, but to

compose it, as well.

Note: PLAY, of course, is not a graphics function. Therefore, you needn’t

preface your programs with PMODE, PCLS, or SCREEN.

Listen Carefully . ..

Here is the syntax for PLAY:

PLAY music plays the value of music, a string expression including

the following:

note (a letter from A" to “G’" or a number from 1 to 12).
octave (O followed by a number from 1 to 5). If you omit

the octave, the computer uses Octave 2.

note-length (L followed by a numeral from 1 to 255). If you
omit the note-length, the computer uses the current

length.

tempo (T followed by a number from 1 to 255). If you omit

the tempo, the computer uses T2.

volume (V followed by a number from 1 to 31). If you omit

the volume, the computer uses V15.

pause-length (P followed by a number from 1 to 255).
substrings. Precede substrings with an X and follow them

with a semicolon. Example: XA$;

133

134

Let’'s Compare Notes
(NOTE)

Obviously, you can't have music without notes. PLAY gives two ways lo
specify the precise note you need.

N T
L L L 1.} -

The first—and probably easier—way to play the note you want is to enter
one of the standard musical notes—A, B, C, D, E, F or G. To indicate a
sharp note, follow the note with a plus sign (+) or with the pound sign (#).
To indicate a flat, follow it with a minus sign (—).

For example, A represents A natural; A# is A sharp; and A — is A flat. Type
the following to see (hear?) what we mean:

PLAY "A" (ENTER
To hear the change that a sharp and a flat can make, enter these lines:

PLAY "As5A=x" (ENTER
PLAY "A-5ASA#3AA-" (ENTER

You can do the same with all seven notes (A-G) on the scale, except B and
C.Since B# =C, you must use C. Likewise, since C — =B, you must use B.

A New ‘““Note’’-ation

Another way to specify a musical note is to use a number between 1 and
12, prefaced by the letter N. (If you omit N, the number alone indicates the
note.)

The numbers 1 through 12 represent every note on the musical scale,
including all sharps and flats. This is a more concise notation, although it is
more difficult to read if you already know the standard notation.

Note: Since PLAY does not recognize the notation B# or C—, use the
numbers 1 and 12, respectively, or substitute C for B# and B for C—.

To hear the full 12-tone scale, run the “"Scale’” program, which follows.

s CLS

186 FOR N = 1 to 12 ‘N = NOTE
15 PRINT "NOTE#"3§ N

20 PLAY STR$(N)

30 NEXT N

Add a delay in the prograni so you can compare the numbers to the notes
as the scale goes up from 1 to 12 (C to B).

23 FOR I = 1 TO 350@: NEXT I

:_I'a;l.usical Note/Number Table |
Number] Note

c
C#D
G ; 2 4 7 g 1
E - D#
EF-
FE#
F#/G ‘
G
G#/A - i
i

2|
I
|
|

(=N I « S B - LIS R

A
A#B -
B

—_
(=]

-y
-

n

DO-IT-YOURSELF PROGRAM 23-1
Maodify the ““Scale’ program so it goes down instead of up.

Whole Notes, Half Notes,
Quarter Notes . . .
(NOTE-LENGTH)

Because the ““Scale’” program does not specify note-length, the com-

uter automatically uses quarter notes, the initial “‘current value.’ . -
p Y q Did you time the notes to be

To choose the note-length, use L followed by a number from 1 to 255. The | ?Ufﬁ' ?ﬂ'"f}‘ aie Joor tiines as
number 1, for instance, denotes a whole note, 2 a half note, 4 a quarter C‘:}’ﬁbL';tt;rfloi.ﬂfgriﬁfri‘;;gi
note, 8 an eighth note, 16 a sixteenth note, and so on. - did it for you. '
In fact, you can use any number from 1 to 255. (Who ever heard of a 1/15th

note?)

Vary the note-lengths to produce a drum roll. Type:

PLAY "LZiAILA4ATASASLZIAIA" (ENTER

Lnumber Note-Length Note
L1 Whole note o
L2 Half note J
L3 Dotted quarter note d.
L4 Quarter note P
L8 Eighth note &
L16 1/16 note &
L32 1/32 note o
L64 1/64 note &
L255 1/255 note

135

We bet you've heard of
| “turning down the stereo”’
| but not “turning down the
| computer”!

136

L2 indicates a half note; L4 a quarter note, so we played as follows: “half,
quarter, quarter, half, half.”

PLAY "L13§ AiA#3A-" (ENTER

Notice that you needn’t repeat the L option for each note. PLAY uses the
current note value until you enter another L command to tell it otherwise.

In fact, most PLAY options discussed in the rest of this chapter use a
“current’” value until you change them.

Just for fun, try playing three 1/255 notes on A:
PLAY "LZ553AiA+3A-" (ENTER

Now that’s staccato.

Love That Dotted Note

If you read music, you already know about ““dotted notes.” The dot tells
you to increase the length of the note by one half its normal value. For
example, a dotted quarter note is equal to a "“3/8” note.

You can play such a note by adding a period (.) or a series of periods
(...) to the Lnumber. Each period increases the note-length by 1/2 its
normal value. For example:

l4. = 1/4 + 1/8 = a 3/8 note

Try this:
PLAY "L4,3A35LBsCsL4d,5ESLBSCIESCsEsCsL4ds5a"
ENTER

Let’s Go Up (or Down) an Octave or Two
(OCTAVE)
Our single octave (Octave 2) sounds fine, but, variety being the spice of

music as well as Irish stew, it gets a little boring when played over and
over (like a piano with only 12 keys).

To change octaves, use the letter O followed by a number in the range
1 to 5. (Any number out of this range results in an illegal function call
error.) ;

If you don’t specify the octave, the computer automatically uses Octave
2, which includes middle-C. Let's try to play a simple C scale:

PLAY "CDEFGABAGFEDCEA" (ENTER

What happened? G is the highest note in Octave 2, so when the com-
puter reached A, it started over at the beginning of the octave. To gel
out into Octave 3, try this:

PLAY "CDEFG3i033ABA0ZSFEDCEBA" (ENTER)

Play It Again—Louder!
(VOLUME)
Sure, you can adjust the volume of your music by using the TV volume

control, but who wants to sit by the set all of the time? Especially when the
computer can adjust the volume for you.

Your computer does this with the V (volume) feature. All you need to do is
use V followed by a numeral between 0 and 31. If you don’t specify the
value of V, your computer automatically uses V15.

The computer uses the current V value until you change it.

Adjust the volume on your TV to a normal setting and run this short
program:

2 CLS

1@ PLAY "U33iAT VID5AT VISiAT YZO5AF VISIAL
u3esan

20 GOTOD 1@

Getting a headache? Press (BREAK) to get out of the loop.

A Moment of Silence, Please
(PAUSE)

Maybe that last little program would be easier to listen to if all the notes
weren’t played together. Use the P (pause) feature for a few moments of
silence between the notes and see if they sound better.

To put a pause between notes, use P followed by a number from 1 to 255.
Pause-lengths correspond to note-lengths with one important difference.
You can’t use dots (periods) with P. To compensate, just type a series of
pauses. For example, to get a 3/8 pause, type P4P8.

Change Line 10 in the last program to read:

10 PLAY "W535A3 P23 VIdiAsF P25 UISiA3
P25 U2@5A3 P23 VESIAF P23 U30:3iAa: P2V

Actually, a half note pause (P2) between all those As doesn’t make them
sound much better, but you should get the idea of how P works.

It’s Time to Pick Up the Tempo
(TEMPO)

Right now the test program looks like this:

2! CLS

19 PLAY "US5AiP23 VIOSAIPZS VISIAIP2S
VZ@3iATP2s UZSIAIPEZS U3@iAasp2Y

20 GOTO 1@

We've left spaces between
each volume/note combina-
tion so you can read the
line without difficulty. The
spaces are not required.

137

A tempo that slow is almost
enough to keep vyou
awake—almost.

If you use machine-lan-
guage to generate the music
and “Tn’ to slow the tempo,
would your computer be a
Slow-POKE?

138

It's passable, if not pleasurable, but the tempo (speed) is a little slow. You
can increase or decrease the tempo with T and a number from 1 to 255.If
you don't specify a tempo, your computer automatically uses T2, Start by
slowing down the tempo of the program:

1@ PLAY "T135 U3SAIPZS VIGIATPES VISIAGTPES
V2@3ASPZ3 UZ55ASP25 V3BiAiPZ"

Speed it up by changing T1 to T15. Now that’'s more like it.

How about speeding it to the maximum, 255, and running the program.
That didn’t take long, did it?

Executing the Substring
(X)
Remember DRAW'’s execute (X) option? PLAY has a similar feature that lets
you execute a substring, then return to the original string and complete it.
The execute function takes the following form:
XAS;

A$ contains a sequence of normal play commands and functions. X tells
the computer to PLAY A$.

Rearrange the demonstration program so that it executes a substring:

o 1

10 A% = "AsAxA-"

20 B% = "OSiXA®:"

30 Cs = "D13iXA$IXBs"
49 PLAY C#%

Run the program and follow its execution.

Note: Whenever you use the execute function, a semicolon (;)
must follow the dollar sign ($). In this example, you can delete all
semicolons except those following the dollar sign.

One Further Note . ..
(+r_r<r>)

No, we're not going to spring a new note, like H or], on you. We just have
one final way you can use some of PLAY’s options. With O (octave), V
(volume), T (tempo), and L (note-length), you can use one of the following
suffixes instead of adding a numeral:

Suffix Purpose

+ Adds 1 to the current value.
Subtracts 1 from the current value.
Multiplies the current value by 2.
Divides the current value by 2.

AV I

Use the sample program to learn about these features.

5 CLS
10 PLAY "T2"

Z@ PLAY "AsAxiA-"
30 GOTO 2@

Notice that Line 10 sets the tempo. Run the program once just to get an ear
for it. Nothing’s changed; it's the same as always. Now insert T in Line 20.

20 PLAY "T+3i A5A#FA-"

Run the program. The plus sign automatically increases the value of T by 1
each time Line 20 is played. From a slow start you can really begin to fly!
Did you hear it shift gears somewhere around T100?

Now reduce the tempo, using a minus sign (—):

3 CLS

1@ PLAY "TZ33"

20 PLAY "T-3 AiQ#3A-"

3@ GOTO 2@
After a fast start, the computer finally manages to slow the tempo down to
1—one step at a time.

Isn’t multiplication faster than addition? In Line 10, reset the tempo to 2,
change T in Line 20 to T>, and let it rip.

10 PLAY "T2"
20 PLAY "T»>i AjA%3A-"

You started out with T2, right? The computer multipled that value by 2 to 4,
4x2to8,8x2to 16, and so on until it reached 255.

You can slow the tempo down just as quickly by dividing the current
tempo by 2 using “<<.”

18 PLAY "TZ535*"
2@ PLAY "T<35 AjA#iA-"

Remember, you can do the same thing with L, V, and O to change the
note-length, the volume, and the octave.

Roll Over, Beethoven

After all the hard work you've done lately, you deserve to be serenaded.

Here is the formula that you
can use to calculate the
note-length: note-length +
fnote-length = number of
dots)/2

Haven't you had days like
that? You start at 255 and by
the end of the day, you're
hitting on one cylinder.

139

We dropped the “G" from
MARCHING in Lines 60 and
70 so the lines can fit on the
sCreen.

If you use PCLS3 to clear the
graphics screen and -then

| make the computer play a
sad song, does that mean it’s
singing the blues?

140

Are you familiar with all the PLAY functions? If so, watch them at work in
the following program and see if you can name this tune!

2
100
185
11e
113
120

125
130

LS
A%
B$
C$
D$
E$

n n n

n

K$ =
PLAY

"TSICIESFILLISGIP4SLASCIESFILLIIG"
"PA4iL4iCSESFILEZESGIESCIESLLISD"
"PBILAYESEsSDsSLZ,.3sCiL4sCiL25E"
"LA43GIGIGILLSFSLA4SESF"
"LEZIGIEFL4ICILBIDID+IDIESGILAFAILL
i035C"
"HASSHBEIHCH IHDEIHES "

it

%

Do you recognize that song? Dress it up a bit by adding these lines:

12
29
30
35
40
43
S0
55
6@

B3

70

PRINT
PRINT
PRINT
PRINT
FOR X
CLS

PRINT
PRINT
PRINT

n @ ||

@
@
@

96+ §
167+
232
288,
1 TO

128,
169,
192

TRING® (32,"%")
"WHEN THE SAINTS"
"GO MARCHING IN"
STRINGE (32,"#")
S00: NEXT X

"OH WHEN THE SAINTS"
"0OH WHEN THE SAINTS"
"OH WHEN THE SAINTS

GO MARCHIN IN"
PRINT @ Z24,

NUMBER
PRINT
INI!

B 256

"YES I WANT TO BE IN THAT

"WHEN THE SAINTS GO MARCHIN

Run the program now and sing along with TRS-80. What? You liked it so
much you want to hear it again. Okay, add these lines:

is5e
160
165
170
175
180
185

CLS
PRINT
FOR X
CLS
PRINT
FOR I
GOTO

5

@

@

130
1 TO

233
1 TO

"PLAY IT AGAIN: TRS-80"
S@@: NEXT X

"I1'D BE GLAD TO"
S00: NEXT I

DO-IT-YOURSELF PROGRAM 24-2

Our rendition of ““Saints”” sounds fine, but it isn’t true New Orleans
style. Jazz it up to suit your own musical tastes. Try changing oc-
taves or adding a few sharps or flats.

DO-IT-YOURSELF PROGRAM 24-3

Try some musical arrangements of your own. We've included sev-
eral in the Sample Programs at the back of the book.

Learned in Chapter 24

BASIC WORDS
PLAY

CONCEPTS

Generating musical notes, including dotted
notes

Determining note-length

Changing octaves

Adjusting the volume

Pausing between notes

Changing the tempo

Executing substrings

Using suffixes to give values relative to the cur-
rent value

Notes

141

THE REAL THING

A special section showing displays
created by programs in this book.

Spiral

There's a tunnel at the end of the
tunnel. When you assign variables
to CIRCLE, it's possible to create a
spiral. This is one way you can sim-
ulate smoke coming from the chim-
ney of your house (see DO-IT-
YOURSELF PROGRAM 19-4).

Fantastic!

DO-IT-YOURSELF PROGRAM 21-2
shows you how to cool off with an
ice-cube. Another way is to turn on
the fan and watch it spin. And if
you let this program run for a
while, that's exactly what happens.
See Sample Program #19 for a list-
ing of this program.

Projection Studies

Starting at the upper left and going
down, you can see different views
(top, front, side, and oblique) of a
“block!’ You can also scale the first
three views up or down using
DRAW's “Scale” feature. (Since the
45-degree oblique view contains
three LINE statements, it can’t be
scaled.) See Sample Program #7.

Box

This is a 2-step process. First the
cube (created by DRAW and
PAINT) appears in its 3-dimensional
form. After a short delay, the box
unfolds so you can see all 6 of its
sides. This uses DRAW, along with
several LINE and PAINT statements.
See Sample Program #8.

In-Out

When you assign variables to a
COLOR and a LINE statement, this
is one thing the computer might do
with it. Take a look at Sample Pro-
gram #5 to see how easy this is.

Navaho Blanket

Actually, the size of this makes it
more like a muffler instead of a
blanket, but you should be able to
finish ““weaving’’ it. Basically, the
program uses only a couple of LINE
statements that increment at speci-
fied “‘steps” and a PAINT statement
or two. Incidentally, this might help
you with DO-IT-YOURSELF PRO-
GRAM 15-3. Sample Program #12
gives you a complete program
listing.

Home, Sweet Home

One of your exercises throughout
this book is to “’build’”” a house (see
DO-IT-YOURSELF PROGRAMS 15-
2 and 19-4). Here’s one you might
use as a model. In this instance, the
garage door is up (using PAINT),
the light is on, and the grass (gener-
ated by RND, DIM, and PSET) is
growing.

After the Boom Is
Over. ..

These concentric circles (increment-
ing at STEP 2) are used at the end
of the ““Timebomb’" program (Sam-
ple Program #18). Notice that
when you use buff with high reso-
lution, it appears to produce several
colors, giving a metallic luster to
the display.

Painted Lace

This program requires DRAW state-
ments, a few buckets of PAINT, and
a lot of patience. Look at Sample
Program #13 and you’ll see the
way it's done.

Open and Closed
Cubes
In DO-IT-YOURSELF PROGRAM

21-2 you drew the closed cube.
Now “open’’ it.

1

¢
fa
\,
"
i,

&

e

3,
s
Y
"\,
b
ot

1
)

wrnaann

.

l

Random Graphics

Random graphics are generated
when you assign random (RND)
values to LINE, CIRCLE, COLOR,
and PAINT and then let the com-
puter take over. For a listing of this
program, see Sample Program #11.

Rolling in the Clover

Sample Program #17 shows you
how to create an eight-leaf clover.
By changing the COS value in Line
35 to 2, you can generate a four-
leaf clover. What happens if you
change the COS value to 1?2 This
program is a good illustration of
PSET, SIN, and COS and a novel use
of pi.

3!
- 1
|
.
i
|
i
I

Riding the Waves

Here the computer uses PSET, SIN,
and COS to draw sine/cosine waves
and LINE to draw the H-V axes.
Notice that each wave travels 360
degrees (from +180 to —180) and
that the H-axis increments 30 de-
grees at each gradation. This is a
good exercise in mapping (scaling
down) a program to fit the TV
screen. Sample Program #9 gives a
complete listing of this program.

SECTION 111

GETTING DOWN
TO BUSINESS

This section deals with information you want to manage. For example, you
may want to manage: ;

Checkbook receipfs
Shopping items

Tax records
Inventory
Addresses

Records, books, or tape collections

In this section, you'll learn how to store, update, sort, and analyze informa-
tion to fit your own needs.

CHAPTER 25

TAPING

Your first and foremost task is to store your information permanently on
cassette tape. This, of course, requires a tape recorder.

CHRISTMAS LIST!
CRELANUES

RECORBS:
-Pop
- CounTRY /WesTERN
RS CLASSICAL
L ROCK N ROL—

INVENTORY :

Ready to get organized? We'll start with vour book collection. Here's a
small list of books:

WORKING

CAT'S CRADLE
SMALL IS BEAUTIFUL
STEPPENWOLF

If you've read your introduction manual, you know how to save BASIC
programs on tape. To save information, you need a program that follows
these steps: :

B

STEPS FOR STORING INFORMATION ON TAPE

1. Open communication to the tape recorder so that you can output
(send out) information to a file.

2. Output all information to the tape recorder file.

3. Close communication to the tape recorder.

Start the program with this line:
14 OPEM "O"4s #-1, "BODKS"

This “opens” communication to the tape recorder (“’device #-1"") so that

you can “output’” (“O") information. Whatever information you output, A
the computer stores on tape in a ““file’” named BOOKS. LI, |
W |

Now output the information. Type: A “file" is a collection of in- [
formation—such as book ti-

15 CLS: PRINT "INPUT YOUR BOOKS--TYPE <KX tles—stored under one
' WHEN FINISHED" name.

20 INPUT "TITLE"S T$%
30 PRINT #-1, T%

4@ GOTO 13

145

Line 20 “prints” (outputs) your book titles—not to the screen, but to device
- 1, the tape recorder.

Then close communications. Type:

25 IF T#% = "XKH" THEN 50
50 CLOSE #-1

The computer then closes communication to the tape recorder.
Add three more lines to the program:

1 CLs

2 PRINT "POSITION TAPE - PRESS PLAY AND
RECORD"

4 INPUT "PRESS <ENTER® WHEN READY"3: R%

The program should now look like this.

1 CLS
2 PRINT "POSITION TAPE--PRESS PLAY AND
RECORD"
S 4 INPUT "PRESS <ENTER> WHEN READY"} R$
Opens Communcadion 19 QPEN "0", #-1, "BOOKS"
Gl At 15 CLS: PRINT "INPUT YOUR BOOKS - TYPE <XX»
WHEN FINISHED"
20 INPUT "TITLE"; T$
Lg 25 IF T$ = "¥X" THEN 50
Punks Lo 40 . — 330 PRINT #-1, T$
40 GOTO 15

CLwg o Cornmumunigadm —3 50 CLOSE #-1
w i ALLodet
Prepare the recorder.

Connect the recorder. Your computer’s introduction manual shows
how.

Position a tape in the recorder, and, if necessary, rewind the tape so
you'll have room for recording. (If you're using a non—Radio Shack
tape, position it past the starting leader.)

Press the recorder’s RECORD and PLAY buttons so that they are both
down.

Then run the program. As soon as you press (ENTER), the cassette motor
turns on: The computer is opening a “file”” on tape and naming it BOOKS.
' £ e --JI\I
i dneiy] 1LTLE? HORKING
| screen after each title. [TITLE? CAT’S CRADLE
e — TITLE?Y SMALL IS BEAUTIFUL
TITLE? STEPPENWOLF
TITLET KX

The program then asks for titles. Type:

Each time you input a title, the computer prints it in a special place in
memory reserved for the tape recorder. When you finish, the tape recorder
motor turns on: The computer is printing all the titles to the recorder (Line
30) and then closing communication with the recorder (Line 50).

Your book titles are now all saved on tape in a file named BOOKS. To read
them back into memory, use just about the same steps.

146

STEPS FOR INPUTTING INFORMATION FROM TAPE

1. Open communication to a lape recorder so that you can input
information from a file.

Check to see if you're at the end of the file.

Input information from the tape recorder file.

el

Repeat Steps 2 and 3 until you reach the end of the file.

Close communication to the tape recorder

(%]}

To open communication, type:
6@ CLS: PRINT "REWIND THE RECURDER AND
PRESS PLAY"

70 INPUT "PRESS <ENTER> WHEN READY"3§ R%
B¢ OPEN "I"s #-1, "BOOKS"

This opens communication to the tape recorder—this time, to input in-
formation from the BOOKS file.

To input information, add these lines:

90 INPUT #-1, B%
10@ PRINT B%

Line 90 inputs the first book title (B$) from the BOOKS file stored on tape.
(The variable name you choose makes no difference.) Line 100 displays
this title on your screen.

To check for the end of the file and close the file, add these lines:

8% IF EOF (-1) THEN 120
i1i¢ GOTO B3
iZ¢ CLOSE #-1

Line 85 says if you are at the end of this file (in this case, the BOOKS file), go
to 120 and close communication with the tape recorder.

Note that EOF(-1) comes before the INPUT #-1 line. If it's after INPUT #-1,
you'll get an IE error—"input past the end of the file.”

List this last part of the program by typing LIST 60 - (ENTER). It should look
like this:

6@ CLS: PRINT "REWIND THE RECDRDER AND
PRESS PLAY"

70 INPUT "PRESS <ENTER:> WHEN READY"3i R%

8@ OPEN "I", #-1, "BOOKS"

85 IF EOF (-1) THEN 1Z0

9@ INPUT #-1, B%

10¢ PRINT B%

119 GOTO B3

120 CLOSE #-1

Now run this part of the program. Type:
FUN G@ (ENTER

When you press (ENTER), the recorder’s motor comes on while the com-
puter inputs items from tape. When finished, it displays the four items on
your screen.

Are you wondering what the
-1 means? EOF returns a -1
when you reach the end of
the file.

Be sure to press only the
PLAY button, Not RECORD.
Also, be sure to rewind the
tape.

If your computer becomes
“hung up” communicating
with the tape recorder, you
can regain control by press-
ing the RESET button. It’s on
the back right-hand. side of
vour keyboard. Then look
for missing or mistyped lines
in your program.

147

U aeth A(Mdl}u
ARSIy et

Clasts ComymoniCation
with Aalander

148

An Electronic Card Catalog

Assume you need to change the program so it can also store the books’
authors and subjects:

TITLE AUTHOR SUBJECT
Working - Studs Terkel Sociclogy
Cat’s Cradle Kurt Vonnegut Fiction
Small Is Beautiful E. F. Schumacher Economics
Steppenwolf Hermann Hesse Fiction

Start by changing the “output’” part of the program (the first half). Type
these lines:

26 IMPUT "AUTHOR":S A%

28 INPUT "SUBJECT: 5%

29 IF A% = "HX" OR 8% = "XX" THEN 5@
30 PRINT #-1, T$: A%, 5%

Then change the “input” part of the program. Type these lines:

90 INPUT #-1, B, A$, S%
10¢ PRINT "TITLE :" B$
122 PRINT "AUTHOR :" A%
104 PRINT "SUBJECT :" S%

Now take advantage of this organization. For example, have the program
print a book list on any given subject. Add these lines:

138 CLS
149 INPUT "WHICH SUBJECT"3 C%
15¢ PRINT "REWIND THE TAPE - PRESS PLAY"
160 INPUT "PRESS <ENTER» WHEN READY"3 E%
170 CLS: PRINT C% " BOOKS" : PRINT
—— 188 OPEN "I", #-1, "BOOKS"
190 IF EOF (-1) THEN 230
—Z0@ INPUT #-1, B%, A%: 5%
21® IF S% = C% THEN PRINT B%: A%
220 GOTO 190
—— 230 CLOSE #-1

Run the input part of the program by typing RUN 130 (ENTER). If you choose
“fiction,” this happens:

WHICH SUBJECT? FICTION
REWIND THE TAPE - PRESS PLAY
PRESS <ENTER» WHEN READY

FICTION BOOKS:

CAT’S CRADLE KURT UVONNEGUT
STEPPENWOLF HERMANN HESSE

DO-IT-YOURSELF PROGRAM 25-1

Assume vou have these checks:

NO. DATE PAYABLE TO ACCOUNT
101 5/13 Safeway food

102 513 Amoco car

103 5/14 Joe's Cafe food

104 517 American Airlines vacation
105 5/19 Holiday Inn vacation

AMOUNT

$52.60
32.70
10.32
97.50
72.30

Write a program that outputs all the checks to tape. Then have it input
them from tape so that you can type one account—such as food—and
the computer will tell you the total amount you've spent on food.

Learned in Chapter 25
BASIC WORDS BASIC CONCEPT

OPEN data files
CLOSE
PRINT #-1
INPUT #-1
EOF

Notes

149

CHAPTER 26

MANAGING NUMBERS

Have you tried to write programs to handle much information? If so,
you'll be glad to know Color BASIC has an easy-to-manage way to keep
track of information.

Assume, for example, you want to write a program that lets you manage
this information:

ELECTION RESULTS

District Votes for Candidate A
1 143
o) 215
3 125
4 331
5 442
6 324
7 213
8 115
9 318
10 314
11 223
12 152
13 314
14 92

Up to now, you've used variables to store information in memory. For
example, to store the votes of the first three districts, type:

A = 143 (ENTER
B = 215 (ENTER)
C = 125 (ENTER

But there’s a better kind of variable you can use. Type:

ACL) = 143 (ENTER
ACZ) = 215 (ENTER)
A(3) = 125 (ENTER)

Each of the above variables has a “subscript’”—(1), (2), and (3). Other
than how they use the subscript, these variables work the same as any
other variables. To see for yourself, type both of these lines:

150

PRINT A3 B3 C (ENTER

PRINT ACL) 5 ACZ

Now take a quick look and compare the two programs below. Both work
the same: Program 1 uses "‘simple variables”
variables.”

PROGRAM

1

)i AC3)

19 DATA 143 215, 125 331+ 442
20 DATA 324 213+ 115, 318 314
3¢ DATA 2234 1532, 314, 82

49 READA:B+Cs» Dy E
50 READF+GsHs+ I+ J
G®@ READK »LsMs N

7@ INPUT "DISTRICT ND. (1-14)"73

75 IF 2314 THEN 7@
8@ IF Z=1 THEN PRINT A "UOTES"
99 IF Z=2 THEN PRINT B "VOTES"

[
D
E
E
G
H
I

"JUOTES"
"UOTES"
“UOTES™
"UgTES"
"UaTeES"
"UOTES"
"UOTES"
J "UOTES
K "VOTES
L "VOTES
M"VOTES
N "UOTES

331, 442
318, 314
9z

1900 IF Z2=3 THEN PRINT
119 IF Z=4 THEN PRINT
120 IF Z=5 THEN PRINT
130 IF Z2=6 THEN PRINT
149 IF Z2=7 THEN PRINT
15@ IF Z2=8 THEN PRINT
160 IF Z=9 THEN PRINT
170 IF Z2=1® THEN PRINT
180 IF Z=11 THEN PRINT
199 IF Z2=12 THEN PRINT
200 IF Z2=13 THEN PRINT
210 IF Z2=14 THEN PRINT
~220 GOTO 70

PROGRAM 2

1@ DATA 1434 2154+ 125
20 DATA 324, 213 115
3@ DATA 223, 132, 314
49 DIMACLA)

5@ FORX=1TO 14

6@ READ A(X)

70 NEXT X

»80 INPUT "DISTRICT ND(1-14)"3
83 IF Z » 14 THEN 80
9¢ PRINT A(Z) "UOTES"
w1lee GOTO 8@

Program 1 is cumbersome to write. Program 2 is short and simple to write.

Enter and run Program 2. Here's how it works:

Line 40 reserves space for a list of information—called an "“array”’

named A—with 14 subscripted items.

Lines 50 and 70 set up a loop to count from 1 to 14. Line 60 reads all

14 votes into Array A:

; Program 2 uses “‘subscripted

I
i

Actually, this leaves room |
for 15 subscripted items |
when you count 0 as a sub-
script.

151

YOUR COMPUTER "S5 MEMORY
ACB)

A1) — 143
A(Z2) — 215
A(3) —— 125
Ald) —— 331
A(D) —— 442
A(B) —— 324

e]
ACE)
ACLY) —314
Al 11) —223
A{L2) — 152

ACL3) —314

e H

on

. Line 80 asks you to input a subscript, and Line 90 prints the item you
recjuested.

A(7) —— 213 Alld) ——-92

Now that you've stored information in an array, it's easy to manage it. For
instance, you can add these lines, which let you change the information:

[The name of the arm;r is A.
| The X or Z in parentheses
|
!

refers to the subscript of one 92 INPUT "DO YOU WANT TO ADD TO THIS" 3 R%
of the items. 94 IFR$ = "NO" THEN B@
. E— 96 INPUT "HOW MANY MORE VOTES" 3 X
\ __NS 97 A(Z) = A(Z) + X
¥ 98 PRINT "TOTAL VOTES FOR DISTRICT" 2 "IS
You don’t need to study | NOW" A(Z)

these programs if you're an-

i il
| |
| xious to move on. We're just | Or you can add these lines to display the information:
|

| |

how fts of dis:
Howiing e e s pun 72 INPUT "DO YOU WANT TO SEE ALL THE TOTALS" 3

| ing subscripted variables.

5%

74 IF 5% = "YES" THEN GOSUB 11@
1e@ GOTO 72

11 PRINT "DISTRICT", "UOTES"
120 FOR KX =1T0 14

130 PRINT X ACX)

14@ NEXT X

150 RETURN

A Second Array

Assume you also want to keep track of a second candidate’s votes—

Candidate B:
ELECTION RESULTS
District Votes for Votes for
Candidate A Candidate B
1 143 678
2 215 514
3 125 430
4 331 475
5 4472 302
6 324 520
7 213 613
8 115 694
9 318 420
10 314 518
11 223 370
12 152 412
13 314 460
14 92 502

152

To do this, add another array to the program. Call it Array B. The following
program records the votes for Candidate A (Array A) and Candidate B

(Array B):

10
20
30
a0
S0
6@
70
8@
9@
100
11@
120
132
149
143
150
16@
17@
180

DATA
DATA
DATA
DATA
DATA SZ20
DATA 370

143
324,
223
G78

2154+ 125,
24849 114y
1324+ 314,
514, 430
13+ G994,
412 46D »

331+
318
92

4734
420 4
S0Z

442
314

302
518

s

5y

DIMACL4)Y s BC14)

FOrR X =1T0 14 '

READ A(X)

NEXT X

FORX=1T0D 14

READ B (X
NEXT X

INPUT "DISTRICT NO."3 Z
IF 2 > 14 THEN 140

INPUT "CANDIDATE AOR B"5 k%

IF R%
IF R%

non

"A" THEN PRINT ACZ)
"B" THEN PRINT B(Z)

GOTO 140

neade

A dotfn i

Baar T

DO-IT-YOURSELF PROGRAM 26-1

Write an inventory program that keeps track of 12 items (numbered

1-12) and the quantity you have of each item.

|
|

To keep track of 52 ““cards,”” you need to use an array. Erase your program

Deal the Cards

and type and run this one:

40
S0
90
100

The computer deals 52 random ““cards,” but if you look closely, you see

FOR X = 1

TO 52

C=RND(32)

PRINT C3
NEXT X

that some of the cards are the same.

To make sure the computer deals each card only once, you can build
another array—Array T—that keeps track of each card dealt. Add these

lines:

3

1@
20
30

The above lines build Array T and put all 52 cards init: T(1) = 1, T(2) = 2,

DIMT(32)

FOR X =1
T(X) = X
NEXT X

TO 32

T3) = 3...T(52) = 52.

Then add some |ines that “erase”” each card in Array T after it’s dealt. Type:
IF T(C) =

6@
B@

T(C) =0

@ THEN 50

—=

You don't need a DIM line if I
none of your array items use |
a label higher than 10. ’
However, it's still a good {
idea to put this line in your |
program to reserve just the ‘
right amount of memory.

SPR S L |

N
\|

153

154

Now the computer can’t deal the same random card twice. For example,
assume the computer first deals a two. Line 80 changes T(2)'s value from 2
to 0.

Then assume the computer deals another two. Since T(2) now equals 0,
Line 60 goes back to Line 50 to deal another card.

Run the program. Note how the computer slows down at the end of the
deck. It must try many different cards before it finds one that it hasn't dealt
yet.

To play a card game, you need to keep track of which cards have been
dealt. You can do this by building another array—Array D. Add these lines,
which store all the cards, in the order they are dealt, in Array D:

7 DIMD(3Z)
70 D(X) =T(C)
93 PRINTD(X) 3

DO-IT-YOURSELF PROGRAM 26-2

Add lines to the program so that it displays only your ““hand”—the first
5 cards dealt.

Learned in Chapter 26
BASIC WORD BASIC CONCEPT
DIM arrays

Notes

CHAPTER 27
MANAGING WORDS

In the last chapter, you used arrays to manage numbers. Here, you'll use
arrays to manage words by editing, updating, and printing an entire essay.

AB(2)=" Esg va
W

-
J
()

A ()= " Porms !

Start with a simple list of words: a shopping list:

1. EGGS 7. TOMATOES
2. BACON 8. BREAD

3. POTATOES 9. MILK

4. SALT 10. CHEESE

5. SUGAR 11. FISH

6. LETTUCE 12. JUICE

Assign each word to a subscripted variable—this time use a subscripted
string variable. For example, for the first three items, type:

54%(1) = "EGGS" (ENTER
S5%(2) = "BACON" (ENTER
5$(3) = "POTATOES" (ENTER

To see how the items are stored, type:
PRINT S%(1) s 5%(2) s 8$(3)

Now build a program that reads these words into an array named $$ and
then displays them:

5 DIM S$(12)
i@ DATA EGGS, BACON, POTATOES, SALT

20 DATA SUGAR: LETTUCE, TOMATOES: BREAD
30 DATA MILK, CHEESEs FISH, JUICE

49 FOR X = 1 TO 12] _ ,
50 READ S%(X) -Mmm&wsﬁ
B@ NEXT X —

70 PRINT “"SHOPPING LIST:"

80 FOR ¥ = 1 TO 12 _
90 PRINT X3 S$(X) |- pusds Quay-S3
100 NEXT X _

The dollar sign’s the only dif-

ference between these sub-
scripted variables and the |

ones in the last chapter.

155

DO-IT-YOURSELF PROGRAM 27-1

Add some lines to the above program so that you can change any item
on this list. '

DO-IT YOURSELF PROGRAM 27-2
Here is a program that uses an array to write song lyrics.

S DIM As(d)
1@ PRINT "TYPE 4 LINES"

Want to compose music? 2@ FOR X =1 TO 4
Look up ““Music Composer” 3@ INPUT A$(X
in the “Sample Programs” 4@ NEXT ¥
appendr'x. 3 50 CLS
6@ PRINT "THIS IS YDUR SONG:"
7@ PRINT
B¢ FOR ¥ = 1 TO 4
9@ PRINT X3 " "3 A$(X

10@ NEXT X

Add some lines so that you can revise any line.

| Haven't heard of word pro-

cessing? It’s a kind of pro- I’

gram that lets you type and ertlng an ESS&Y

store information, make .

changes to it, and print it out (. .. A Novel, Term Paper e .)

on demand.
I Now that you've learned how to use string arrays, it will be easy to write a
\) program that stores and edits what you type. Type this program:

1 CLEAR 100Q
3 DIM A%(50)
Need a refresher on some of 1¢ PRINT "TYPE A PARAGRAPH"

this? CLEAR is in Chapter 8 " e "
andINKEYS isin Chapter 11, gg 5R’£NI PRESS «/% WHEN FINISHED

= ' 40 A% = INKEY$
\ S0 IF A% = "" THEN 4¢

6@ PRINT A%

70 IF A$ = "/" THEN 110
BO AS(X) = AS(X) + A%

90 IF A% = "," THEN X = X + 1
100 GOTO 40

11¢ CLS

12¢ PRINT "YDUR PARAGRAPH:"
130 PRINT

140 FOR Y = 1 TO X
150 PRINT A$(Y);
160 NEXT Y

Run the program. To see how each sentence is stored, type these lines:

PRINT A$(1) (ENTER

PRINT A%(Z)
PRINT A%$(3) (ENTER

Here’s how the program works:

Line 1 clears plenty of string space.

156

Line 5 saves room for an array named A% that may have up to 50
sentences.

Line 30 makes X equal to 1. X will be used to label all the sentences.

TR

Line 40 checks to see which kev you are pressing. Il it is nothing ("),

Line 50 sends the computer back to Line 40.
Line 60 prints the key vou pressed.

Line 70 sends the computer to the lines that print vour paragraph when
vou press the /" key. .

Line 80 builds a string and labels it with number X. X is equal to 1 un-
til vou press a period (.). Then Line 80 makes X equal to X + 1,

For example, it the first letter vou press 1s “R”
AS$(1) EQUALS “R".
If the second letter you press is “Q",

AS$(1) EQUALS A%(1) - WHICH IS R + 0"
OR
“RO™.

Assume that when A$(1) equals ROSES ARE RED, vou press a period.
A$(1) then equals the entire sentence: ROSES ARE RED. The next letter
you press is in A$(2).

Lines 140 — 160 print your paragraph.

DO-IT-YOURSELF CHALLENGER PROCGRAM 27-3

Here's a lough one (but it can be done!) for those intrigued with word
processing. Change the above program so that you can:

1. Print any sentence
2. Revise any sentence

You may need to review the challenger program in Chapter 12. Our
answer’s in the back.

Using the Printer

If you have a printer, connect it now by plugging it into the jack marked
SERIAL I/O. Turn on the printer and insert paper. The manual that comes
with the printer shows how.

Ready? Type this short program:

1@ INPUT A%
20 PRINT # - 2+ A%

Now type:
LLIST

If your program doesn’t list on the printer, be sure the printer is on,
“on-line,” and connected to your keyboard. Then type LLIST (ENTER)

again.

157

| Having trouble getting into i
this mode? Read the end of
Chapter 1.

——

) 1
| —X
| \

Y

(

| el g
[4

| Allthe letters in RUN should
appear in regular (not re-
versed) colors.

e

If you have a Deluxe Color
Computer, you can get true
lower-case letters (rather
than reversed letters) to ap- |
pear on your screen. See |
|
{

Introducing Your Deluxe
Color Computer.

158

Run the program and watch the printer work. PRINT # - 2, tells the
computer to print, not on the screen, but on device # - 2, which is the
printer. Be sure to type a comma after the -2, or you get a syntax error.

Press the and (@) (zero) keys simultaneously and release them so
that the letters you type appear in reversed colors on your screen (green
with a black background). You are now in an upper- lowercase mode. The
reversed colored letters are actually lowercase (noncapitalized) letters.

To type a capital letter, use the (SHIFT) key as you do with a typewriter. It
appears in regular colors.

Run the program, using the (SHIFT) key so that the word RUN is capital-
ized. Input a sentence with both upper- and lowercase letters. Type:

MY PRINTER PRINTS LOWERCASE LETTERS (ENTER)

DO-IT-YOURSELF PROGRAM 27-4

Look at the “Writing an Essay’' program earlier in this chapter. Change |
Lines 140-160 so that the paragraph prints on the printer rather than E

e - e
i
|
i

the screen.
= = e
Learned in Chapter 27 F
BASIC WORDS BASIC CONCEPT .
LLIST string arrays i
| PRINT # - 2 §
e SOR—

Notes

CHAPTER 28

SORTING

Any file clerk knows it’s easier to find information that’s sorted alphabeti-
cally. Type this program and run it, until you’re convinced the computer
can alphabetize:

1@
2@
3@
49

S0

INPUT "TYPE TWO WORDS" 3 A%, B%

IF A¢ < B% THEN PRINT A% " COMES BEFORE " B%
IF A% > B% THEN PRINT A% " COMES AFTER " B%
IF A% = B¢ THEN PRINT "BOTH WORDS ARE THE
SAME"

GOTO 10

AN
L B
q i B 57
) e -
(= =\ =
; boers
. 1 A=
=]
s | = 4
- o Y - |

With strings, the greater than (>), less than (<), and equal (=) signs have a
new meaning. They tell which of two strings comes before the other in
alphabetical sequence:

Il

Vv AA

precedes alphabetically

precedes or is the same alphabetically
follows alphabetically

follows or is the same alphabetically
is the same

Since the computer can alphabetize, it's easy to write a sorting program.
Type and run this program, which sorts 5 words:

1@
20
30
4@
50
6@
7@
8@
ga
100
110
120
130
140

DIMA$(D)
FORI=1TO03
INPUT "TYPE A WORD" 5 A%(I)

NEXT I _
A=0 You can easily make the
H=H+1 computer alphabetize more
IF ¥ >5 THEN GOTOD 7@ words by changing the 5 to
Y= T say, 100, in Lines 10, 20, 70,
IF A$(X)="2ZZ" THEN G@ 280, .

FORY =1T05
IF A$(Y) < A$(X) THEN X = Y
NEXT Y
PRINT A% (X)

A% (X)="ZZ"
GOTO 50

159

160

To see how the program works, delete Line 120 and add the following
lines. (These lines only show what the program does—they have nothing to

do with sorting.)

120

5 CLS

43 CLS

B3 U=U+1

105 PRINT @ 15+32%(V-1) 4 A% ()
135 GOSUB S0

300 FORI=1TOGS
S1® PRINT B @+32%(I-1)+A%(I) 3" %

SZ20 NERTI
530 RETURN

Run the program. Too fast? Type this line. It slows down the program so
vou can see what's happening:

107 FORT =

1 TOG@@: NEXT T

Now run the program again. Input these words and watch carefully:

MICHAEL
TRAVIS
DYLAN
ALEXIA
SUSAN

Look at Column 2. See how the first name changes from Michael to Dylan
to Alexia. Next, notice what happens to Alexia in the first column. Alexia

becomes Z7Z.

This illustrates how the program sorts the first and second words:

TRAVIS
DYLAN
ALEXIA
SUSAN

MICHAEL
TRAVIS
DYLAN

5US5AN

ALEXIA
TRAVIS
DYLAN
22
SUSAN

MICHAEL ALEXIA
TRAVIS
DYLAN

SUSAN

FIRST WORD

MICHAEL
TRAVIS
DYLAN
ALEXIA
SUSAN
MICHAEL
TRAVIS
DYLAN
ALEXTIA

SECOND WORD
MICHAEL ALEXIA

DYLAN

SUSAN

MICHAEL ALEXIA
TRAVIS

DYLAN

ZE

MICHAEL
TRAVIS

ALEXIA
SUSAN

MICHAEL ALEXIA
TRAVIS

- DYLAN

b
L

SUSAN

MICHAEL ALEXIA
TRAVIS

ZZ
SUSAN

MICHAEL ALEXIA
TRAVIS DYLAN
P
ZZ

SUSAN

Here's how the program works:
Lines 50 and 60 set X's value. At the start, X is 1.

Then Lines 90—110 compare A$(X)—Michael—with every other name in
Array A$ until a word is reached that precedes Michael—Dylan.

Line 100 then makes A$(X) equal to Dylan’s place in the array: A$(3).
When Dylan is compared with the fourth word—Alexia—A$(X) becomes
A%(4).

When all the words have been compared with one another, Line 120
displays the first sorted word: Alexia. Line 130 changes Alexia’s position—
A$(4)—to ZZ.

At this point, Lines 50 and 60 make X equal 1 again. A$(X)—Michael—is
compared with other names in the array to find the second sorted word.

When Michael’s place in the array becomes ZZ, Line 60 sets X to 2. Then,
A$(X)—which is now Travis—is compared with all the names in the array
to find the next sorted word.

When the array’s values are all changed to ZZ, Line 70 ends the program.

DO-IT-YOURSELF PROGRAM 28-1

Using this sort routine, change the program from the last chapter so
that it alphabetizes your books by title, author, or subject.

This chapter shows a simple way to sort. If you need to sort many items,
you may want to research faster sorting methods (such as the bubble sort).

Learned in Chapter 28
BASIC SYMBOLS

AV

Notes

161

CHAPTER 29
ANALYZING

If you have more than 4K RAM, you have an easy way to analyze informa-
tion. By giving each item more than one subscript, you can see it through
different dimensions.

Take the voting program from Chapter 19. Here’s the information. (We're
using only the first three districts to make the program simple.)

We're only using three dis- ELECTION POLL
tricts to keep it simple.

We're calling them Candi District Votes for Votes for
re callin em Candi- > €

dates 1 and 2 this time rather Candidate 1 Candidate 2
than Candidates A and B. 1 143 678

L 2 215 514
3 125 430
In Chapter 19, you stored the above “items” (groups of votes) in two

one-dimensional arrays: Arrays A and B. In this chapter, you'll store them
in one easy-to-manage two-dimensional array: Array V.

The following program puts the items in Array V.

S DIM W(3.,2)
16 DATA 143, 678, 215, 514, 125, 430

20 FORD =1 TO 3
/ 430 FORC = 1 TO 2
(fam READ Y(D,C)
\\MSE NEXT C

B0 NEXT D

70 INPUT "DISTRICT NO. (1-3)"; D

80 IFD< 1O0RD > 3 THEN 70

90 INPUT "CANDIDATE NO. (1-2)"3j C

100 IFC < @ ORC > 2 THEN 90

11@ PRINT Y(D.:C)
120 GOTO 7@

162

Type and run the program. Notice that each item is labeled by two
subscripts.

Here's how the program works:

Line 5 reserves space in memory for Array V. Each item in Arrav V can have
two subscripts: the first, no higher than 3; the second, no higher than 2.

Lines 20-60 read all the votes into Array V, giving them each two
subscripts:

The first subscript is the district (Districts 1-3).
The second subscript is the candidate (Candidates 1-2).

YOUR COMPUTER ‘S MEMORY
W(l,1)—-143 U(14+2)—B78

U(241)—E215 V(Z2,2)—=314
Vi3l =128 W(3,2)—d30

Forexample, 678 is labeled V(1,2). This means 678 is from District 1 and is
for Candidate 2.

With all the votes in a two-dimensional array, it's simple to analyze
them—in two dimensions. By adding these lines, for example, you can
print all the votes in two ways: by district and by candidate.

(Delete Lines 70-120 first)

7¢ INPUT “TYPE < 1 » FOR DISTRICT OR R et tor el

¢ 2 » FOR CANDIDATE"j R %!mﬂ?ﬂjﬂﬂﬂﬂikhms|
B0 IF R <« 1 DR R » 2 THEN 7@ | Line 70. 1
ﬁylﬁﬁ ON R GDSUB 1000 2000 =S e
[110 cOTO 70

$190® INPUT "DISTRICT NO(1-3)"3 D
191@ IF D < 1 OR D > 3 THEN 1000
1015 CLS
| 1020 PRINT @ 132, "UOTES FROM DISTRICT" D
| 1030 PRINT
| 1040 FORC =1 7O 2
| 1#5® PRINT "CANDIDATE" C.
! 1960 PRINT W(D:C)
} 1879 NEXT C
{
\

S

e ———

1280 RETURN

w2000 INPUT "CANDIDATE NO(1-2)"5 C
2010 IF C < 1 OR C » Z THEN Z000
2015 CLS
2020 PRINT @ 132, "VOTES FOR CANDIDATE" C
2030 PRINT
2040 FOR D = 1 TO 3
2050 PRINT "DISTRICT" D
2060 PRINT w(D.C)
2079 NEXT D
2080 RETURN

163

sty The Third Dimension

| Ifyou are truly an analytical

| type, you're going to love | ; ; , , G

| the rest of this chapter. If | You can continue with as many dimensions as you want. You're limited
:_ you’rekdeﬁnite!y NOT that only by how much information you can fit into the computer’s memory.
| type, skip it!

|

..?_J' Add a third dimension to Array V: interest groups. Here's the information:

VOTES FROM INTEREST GROUP 1

Candidate 1 Candidate 2
District 1 143 678
District 2 215 514
District 3 . 125 430
VOTES FROM INTEREST GROUP 2
Candidate 1 Candidate 2
District 1 525 54
District 2 318 157
District 3 254 200
VOTES FROM INTEREST CROUP 3
Candidate 1 Candidate 2
District 1 400 119
District 2 124 300
District 3 75 419

To get all this into your computer’s memory, erase your program and type

5 DIM U(3:3:2)

16 DATA 143 G678, 215, 314, 125, 430
20 DATA 323 34, 318, 157 254, 200
3¢ DATA 4e@s 119, 124, 300, 75+ 419

240 FOR G = 1 T0 3
/ »30 FOR D = 1 7D 3
[[~60 FORC =1 T0 2

\K 70 READ V(G.D.C)

\ \\80 NEXT C
~89@0 NEXT D

110 INPUT "INTEREST GROUP NO (1-3)"3 G

12¢ IF G < 1 OR G > 3 THEN 110
13¢ INPUT "DISTRICT NO. (1-3)35 D
149 IF D < 1 OR D > 3 THEN 130
15¢ INPUT "CANDIDTE NO. (1-2)"% C
16 IF C < 1 OR C > 2 THEN 130
170 PRINT W(G:D:C)
180 GOTO 11@

Run the program and test the subscripts. Lines 40-100 read all the votes
into Array V, giving them each three subscripts:

The first subscript is the interest group (Interest Groups 1-3).
The second subscript is the district (Districts 1-3).
The third subscript is the candidate (Candidates 1-2).

164

—— e
e

YOUR COMPUTER 'S MEMORY

V(141 +1)—143
V(14+241)—218
Bl 310125
W(Z24+1,1)—>525

U(2:2:1)—318
U(2:3:+1)—254
V(341 +1)—400
V(321)—124
U(3:3:1)—>75

Uil41,2)—>0678
Ui1+2,2)—514
W(1432)—430
V(2:14+2)—34

V(2:242)—137
U(2:3:2)—200
U(3:1:2)—118
V(3 +242)—300
U(3:3:2)— 419

For example, 678 is now labeled V(1,1,2). This means 678 is from Interest

Group 1, is from District 1

, and is for Candidate 2.

To take advantage of all three dimensions, delete Lines 110-180 and type:
119 PRINT: PRINT "TYPE «<1: FOR GROUP"

120 PRINT "<2

» FOrR DISTRICT OR <3> FOR

CANDIDATE"

130 P = 224

/[150 GOTO 110

1020 CLS
. 1036 PRINT
1 1040 PRINT
j 19050 PRINT
| 1060 FOR D
a 107¢ PRINT
\ 1080 FOR C
1

1

| nm i mrirm@Em|

1180 PRINT

1118 NEXT C
| 1120 P = P +
\ 1130 NEXT D
\ 1140 RETURN

INPUT R

~ 140 ON R GOSUB 1000 .,2000.3000

i 1000 INPUT "GROUP(1-3)"35 G
1¢1¢ IF G«<1 OR G>3 THEN 1002

182+ "VOTES FROM GROUP" G
168 "CAND, 1"

176+ "CAND, 2"

1 TO 3

Py "DIST." D

1 TO 2

P + Bx¥Cy» V(G:DsC) 3

32

3 2000 INPUT -"DISTRICT(1-3)"35 D

2019 IF D<1 OR D*3 THEN 2000

2020 CLS
2030 PRINT
2048 PRINT
20530 PRINT
2060 FOR G
2078 PRINT
2080 FOR C
21900 PRINT
211@ NEXT C
2120 P = P +
2130 NEXT G
2140 RETURN

Mm@ umEm

iez, "VOTES FROM DIST." D
168+ "CAND. 1"

176 "CAND., 2"

1 TO 3

Ps "GROUP"™ G

1 170 2

P + B*C,V(GsD4CI 3

d2

\
“—3 3009 INPUT "CANDIDATE(1-2)"3i C
3010 IF C<1 OR C*2 THEN 3000

165

3020 CLS

3030 PRINT
3040 PRINT
3050 PRINT
3860 PRINT

1

1¢2, "UOTES FOR CAND.
168+ "DIST. 1"
176+ "DIST. 2"
ig4, "DIST. 3"

3870 FOR G 1 T0 3
3080 PRINT Py "GROUP" G
309@¢ FOR D 1 TO 3

7 T i I VO vy v i B

3100 PRINT
3110 NEXT D
3120 P = P + 32
3130 NEXT G
3140 RETURN

P + B#%¥Ds U(G:D:C) s

Run the program. You can now get three perspectives on the information.

DO-IT-YOURSELF PROGRAM 29-1

Write a program to deal the cards using a two-dimensional array.
Make the first dimension the card’s suit (1-4) and the second dimen-
sion the card’s value (1-13).

Learned in Chapter 29
BASIC CONCEPT
Multidimensional arrays

Notes

166

SECTION 1V

BACK TO BASICS

This section sends you back to school. You'll learn some new Extended
Color BASIC words that will help you refine and polish your programs.

169

CHAPTER 30
THE NUMBERS GAME

Your “‘extended’” Color Computer includes several advanced mathematical
functions. This chapter gives a rundown of each function and shows the
ways to use it.

EPETY
e

066000005680 0 éo%;

Before continuing, however, you need to know about a couple of functions
and definitions discussed below.

Exponentiation
€Y
Quick! What's |.5 squared¢ How about 77 cubed? If you don’t know, ask

the computer. Anytime you want to raise a number to the nth power, follow
this format:

number () power
number is the base (the number you wish to raise to the nth
power). It may be any numeric expression.

up-arrow is generated by pressing (1)

power is the exponent to which the base is raised. It may be any nu-
meric expression.

Note: Exponentiation has precedence over other operators. For exam-
ple, if the computer calculates — 2 up-arrow 2, the result is a negative
number. To raise — 2 to the 2d power ““correctly’” (resulting in positive
number), enclose — 2 in parentheses.

Start with 77 cubed. After looking at the syntax block, can you give the
command? Your answer should be 456533.002.

If your screen looks like this, you're off to a good start:

PRINT 77 4 3
456533.,002
0K

Try raising 10 to the 10th power. The screen displays:
1.00000001E+10

Don’t worry about the
“.002."" This is called a
“round-off error’ and is
necessary because the
computer isn’t the “‘per-
fect’” calculator. But then,
no machine is.

171

Trigonometry is the investi- ’
gation of the relationship |
of a triangle’s sides to jts |
angles. |

172

Since 10,000,000,000 has more than 9 significant digits, the computer
went into the E notation explained in Chapter 13.

How about 100 to the 100th power? Does the screen display an 20V ER-
ROR (overflow)? This means that the answer is too large for the computer
to handle. Anything outside the range — 10 to + 10 causes an overflow
error.

DO-IT-YOURSELF PROCRAM 30-1 E

Write a short program that displays the square of each whole number
from 1 to 10.

SQR

SQR enables you to find the square root of a number. Here is its syntax:

number is zero or any positive number.

SQR (number) E

For example, if you want the square root of 100, type:

PRINT SQRrR(10@)

and you'll find out (if you didn’t already know) that the answer is 10.

DO-IT-YOURSELF PROGRAM 30-2

Write another short program to display the square root of every tenth
number from 100 to 0.

TRIG Functions

Look at this triangle. You’ll be using it throughout the discussion of trigon-
ometric functions.

AB

sc
SA

AA AC
sB

Trigonometry has many practical applications. For instance, imagine that
your triangle is actually the roof of a house you're building. Trigonometric
functions can help you determine either the length of the rafters or the slope
of the roof (the “’pitch”). So if math turns you off but building things turns
you on, this section might be just what you're looking for.

Notice that we've labeled angles with the prefix A and sides with the prefix
S. Angle A, for example, is AA; the side opposite it is SA.

Using the triangle, we can define the common trig functions in the follow-
ing manner: :

Sine of AA = SIN (AA) = SA/SC
Cosine of AA = COS (AA) = SB/SC
Tangent of AA = TAN (AA) = SA/SB

Degrees v Radians

To define an angle, you may use either of two units of measurement. The
more common unit is the degree; the “more technical’” unit is the radian.

Your computer assumes all angles are measured in radians. Since radians
may be somewhat alien to you, you can convert them to degrees (and vice
versa) this way:

Degrees to Radians: Degrees / 57.29577951
Radians to Degrees: Radians * 57.29577951

This chapter’s sample programs include a “converter” that takes the de-
grees you input and automatically converts them into radians (and vice
versa for some purposes).

SIN

That's sine—pronounced like “'sign!’
Its syntax is:

S e

|

| SIN (angle)

angle is angle’s size in radians.

B

Given the length of one side and the sizes of two angles, you can use SIN
to determine the lengths of the other sides.

Enter and run the following program, inputting any values.

5 CLS
1@ INPUT "WHAT IS ANGLE A (AA)Y"§ AA:
IF AA<=0 OR AA>=180 THEN 100
20 INPUT "WHAT IS ANGLE B (AB)"i AB:
IF AA <=0 OR AB >=180 THEN 100
3@ INPUT "WHAT IS SIDE C (8C)"3§ SC:
IF SC <=9 THEN 100
49 AC = 180-(AA+AB) ‘VALUE OF ANGLE AC
50 IF (AA+AB+AC) < > 180 THEN 19@
‘TRIANGLE=180 DEGREES
6@ AA=AA/S57.29577951: AB=AB/57.29577951:
AC=AC/57.,29577951
/ CONVERT DEGREES TO RADIANS
70 SA=((SIN{(AA))/(SIN(AC))) * BC: IF SA<0O
THEN 10@
8¢ SB=((S5IN(AB))/(SIN(AC))) #* SC: IF SB<@
THEN 100
99 PRINT "SIDE A (SA) IS" SA "LONG":
PRINT "SIDE B(SB) IS"
SB "LONG": GOTO 10
190 PRINT "SORRY: NOT A TRIANGLE.
TRY AGAIN": GOTO 1@

In the Sample Program |

section is a program called |

| Drawing Triangles. Thal |

‘ program draws triangles |

based upon sides and an- i
L gles that you specify.

|

173

When the computer asks you for AB and AC, input degree-measures of the
angles. If you enter a negative number or a number that is greater than or
equal to 180, the computer goes to Line 100. It then prints the message and
again asks for the sizes. If you enter a negative number for SC, it does the
same thing.

Since you don’t know the size of AC, the computer automatically computes
this in Line 40. If the sum of the three angles is not equal to 180 degrees,
the computer takes appropriate action in Line 50. Line 60 converts degrees
to radians so the computer can do the sine calculations.

Sine Waves

You may have seen sine waves before. They're used to indicate AC power
and other electrical conditions. Run the following program to see a “hori-
zontal scrolling” sine wave (and check the Sample Program section for a
more conventional sine wave).

5 CLS
18 FOR A = 180 TO -178 STEP-10
20 RD A/ B7.29377951 ‘RADIANS
30 CL SIN(RD) # 14 + 16.5
‘CL = COLUMN POSITION
4@ PRINT TAB(CL)3F"S" ‘PLOT SINE OF RD
30 NEXT A
G@ GOTO G@

m n

COS

The cosine function is related to the sine function and has the following
syntax:

COS (angle)

angle is angle’s size in radians.

Given the lengths of two sides and the size of one angle, you can use cosine
to determine the length of a triangie’s third side, as shown here:

S CLS

10 INPUT "WHAT IS ANGLE C (AC)"3 AC:
IF AC<=0 OR AC>=180 THEN 120

20 AC=AC /7 37.28577851
‘CONVERT DEGREES TD RADIANS

38 INPUT "WHAT IS SIDE A (S5A)"35 SA:
IF 5A<=0 THEN 102

4@ INPUT "WHAT IS SIDE B (SB)Y"35 GB:
IF SB=<@® THEN 10@

50 SC = ((SA 4 2)+(SB } 2))-(2#(5A*SB*
COS(ACY)): IF S5C<@ THEN 100

G@ PRINT "SIDE C (8C) IS" SOQR(SC) "LONG":
GOTO 1@

1@ PRINT "SORRY: NOT A TRIANGLE.
TRY AGAIN": GOTO 1@

Notice that the program works almost the same as the SIN program except
for the use of exponentiation (up-arrow) in Line 50 and SQR in Line 60.

174

i v T s TR ST e e T T

DO-IT-YOURSELF PROGRAM 30-3

Cosine can make waves of its own. Rewrite the "’Sine Wave'’ program |
so that it plots COS(RD) instead of SIN(RD). Use C (for cosine) to display |
the wave made by COS. What is the difference between the two? !

TAN

The third trigonometric function, TAN, lets you calculate the tangent of an
angle. Here is its syntax:

TAN (angle)

. |
angle is angle’s size in radians.

]

T T S AT E T T T,

You can use TAN to determine, among other things, one side of a triangle,
given another side and one angle.

Enter and run this program:

3 LS

19 INPUT "WHAT IS SIDE B (SB)"35 SB:
IF 8B<=0 THEN 10@

2@ INPUT "WHAT IS ANGLE A (AA)"3F AA:
IF AA<=0 OR AA»=180 THEN 1040

3@ AA=AA/D7,28577951 ‘CONVERT DEGREES
TO RADIANS

40 SA=5B*(TAN(AA)): IF SA<{=0 THEN 100

5@ PRINT "SIDE A (SA) IS" SA "LONG":
GOTO 1@

19@ PRINT "SORRY s NDT A TRIANGLE.
TRY AGAIN": GOTO 190

The key to this program, of course, is Line 40, where the tangent of AA is
multiplied by the length of SB to determine the length of SA.

ATN
ATN (arctangent) is the inverse of TAN and has the following syntax:

B I T

ATN (angle) _
angle is angle’s size in radians. :

S — |

The following program uses ATN and TAN to calculate two unknown angles
of a triangle when two sides and one angle are known.

18 CLS

2@ INPUT "WHAT IS SIDE A (SA)"i SA:
IF SA<=0 THEN 15@

3@ INPUT "WHAT IS SIDE C (8C)"3i SC:
IF SC«<=0 THEN 15¢@

4@ INPUT "WHAT IS ANGLE B (AB)"i AB:
IF AB<=0 OR AB»=180 THEN 150

5@ X=(18@-AB) ‘AA+AC=18B0-AB

6@ X=K/57.28577951 ‘CONVERT DEGREES
TO RADIANS

70 Y¥=((5A-5C)/ (5A+8C)) *TAN(X/2)

175

176

B2 Z=ATN(Y)

90 AA=(X/2)+(Z)

189 AC=(X/2)-(2)

110 AA=AA%*37,29577951 "CONVERT
RADIANS TO DEGREES

120 AC=AC*57,29577851 "CONVERT RADIANS
TO DEGREES

138 PRINT "ANGLE A (AA) IS" AA "DEGREES"

id4e9 PRINT "ANGLE C (AC) IS8" AC "DEGREES":
GOTO 2@

159 PRINT "SORRY s NOT A TRIANGLE.
TRY AGAIN": GOTO Z@

TAN ((AA-AC)/2) is equal to ((SA-SC)H(SA + SC)) * TAN ((AA + AC)/2). Also
notice that it was necessary to convert the ““computer’s’ radians to “your”
degrees (Lines 110 and 120).

LOG

LOG returns the natural logarithm of a number. This is the inverse of EXF,
so X =LOG(EXP(X)). Here is LOG’s syntax:

LOG (number)
number is greater than zero.

The logarithm of a number is the power to which a given “’base” must be
raised to result in the number. “Logs” are useful in scientific and mathe-
matical problems. In the LOG function, if you omit the base, the computer
assumes you are specifying Base e (2.718281828). :

To find the logarithm of a number to another base, B, use this formula:
log base B (x) = log e (x) / log e (B)

For example, LOG (32768)/LOG(2) returns the logarithm to Base 2 of
32768. (It returns the power to which 2 is raised to get 32768.)

Try these:

PRINT LOG (1) (ENTER
PRINT LOG (1@@) (ENTER
PRINT LOG (2,718281828) (ENTER

DO-IT-YOURSELF PROGRAM 30-4
Compute the LOG of each of the following numbers:
a) 1003 b) 74.9865 c) 3.354285

DO-IT-YOURSELF PROGRAM 30-5
Compute the log to Base 10 of each of the following numbers:

a) 1 b) 10 c) 100
d) 500 e) 0.1 fy 1001
log e x

Hint: log 10 x =

loge 10

EXP

The EXP function returns the natural exponential of a number (enumber).
EXP is the inverse of LOG; therefore, X = EXP(LOG(X)). Here is EXP’s

syntax:

I e R R ST AT L

, EXP (number)
j number is less than 87.3365.

Run this program to see EXP at work.

i@ CLS

20 INPUT "ENTER X"3§ X

30 PRINT "EXP(X)="3§ EXP(X)
49 GOTO 2@

FIX

It's impressive when your computer carries a number out to 9 significant
digits, especially when 8 of those numbers are to the right of the decimal
point.

However, sometimes you might not want all those numbers; you may want
only the whole-number portion (the number to the left of the decimal point).
FIX lets you get this whole number by simply chopping off all digits to the
right of the decimal point. Here is FIX's syntax:

FIX (number)

e

For example, type:
PRINT FIX (2.,2643951) (ENTER

The computer displays:

2

oK
Here’s a program that breaks a number into its whole and fractional
portions.

10 CLS
20 INPUT "A NUMBER LIKE X.YZ"3; X
30 W=FIXO0

40 F=ABS(X)-ABS (W)

50 PRINT "WHOLE PART="35 W

6@ PRINT "FRACTIONAL PART="3 F

70 GOTO 2@
DEF FN When you use this feature,
; g ; don’t forget to use the DEF
Extended Color BASIC has one numeric function, DEF FN, that is un- FN statement before you
like any others we've talked about so far. DEF FN lets you create your try to execute the function
own mathematical function. You can use your new function the same it defines, Otherwise a 2UF

as any of the available functions (SIN, COS, TAN, and so on). Once ERROR (undefined func-
tion) occurs.

you've used DEF FN to define a function, you may put it to work in | S

177

your program by attaching the prefix FN to the name you assign to the
new function. Here is the syntax for DEF FN:

DEF FN name (variable list) = formula
name is the name you assign to the function you create. !
variable list contains one “‘dummy variable” for each vari-
able to be used by the function.
formula defines the operation in terms of the variables given
in the variahle list

Note: Variable names that appear in formula serve only to define
the formula; they do not affect program variables that have the
same name. You may have only one argument in a formula call;
therefore, DEF FN must contain only one variable.

You may use DEF FN only in a program, not in the immediate
mode.

For example, one math operation you’ve had to use several times in
this chapter is degree-to-radian conversion. Wouldn't it be nice if the
computer did that for you?

If you’ll change the sample program we used for SIN, you'll see how
to create a DEF FN that converts degrees to radians.

7 DEF FNR(X)=%/57.,29577951
60 AA=FNR(AA): AB=FNR(AB): AC=FNR(AC)

You can see right away how much typing this saves, since you had to
enter 57.29577951 only once. Whenever FNR is called into use, the
computer automatically inserts whatever values you have used and
performs the prescribed operation.

DO-IT-YOURSELF PROGRAM 30-6
Use DEF FN to:
1. Convert radians to degrees.

| 2. Create a math function that cubes numbers.

You'll find a quick reference table of many useful mathematical formu-
las (plane geometry, trig, and algebra) in the Appendix.

178

BASIC WORDS

SQR
SIN

COS

TAN

ATN

LOG
EXP

FIX

e ————— e

Learned I iﬂl-ihé'h:ipter' 30

CONCEPTS

Computing a square root

Computing the sine;

Determining two unknown sides of a trian-
gle, given two angles and a side.
Computing the cosine;

Determining the unknown side of a trian-

gle, given two sides and an angle
Computing the tangent;

Determining the unknown side of a trian-
gle, given one side and an angle
Computing the arctangent;

Determining two unknown angles of a tri-
angle, given two sides and the third angle
Computing the natural logarithm of a
number

Computing the natural exponential of a
number

Rounding a decimal number to a whole
number

Defining a function

A B T e oy s

Notes

179

CHAPTER 31

IT DON’T MEAN A THING
IF IT AIN'T GOT THAT

STRING

180

Earlier, we discussed string at great length. Now it's time for informa-
tion about more of Extended Color BASIC's string functions.

STRING$

Zing goes STRINGS$. .. and when you use it to create a string of char-
acters, you can produce graphs, tables, and any other text display. The
syntax of STRING$ is as follows:

STRINGS$ (length,character)
length is a number from 0 to 255.

character is either a string expression for a character or a
numeric expression for an ASCII code. If you use a string
constant, enclose it in quotes.

a

The number of characters displayed depends on the number you spec-
ify in length. Which characters are used depends on either the charac-
ter or the ASCII code you specify. See the Appendix for a complete list
of ASCII character codes.

For instance, jazz up your overworked “‘Lines” program by changing it
as follows:

o ELS

B X% = STRINGSE (13,"#")

7 PRINT @ 96, X&3 "LINES"3 K%
9 FOR X = 1 70O 1900@: NEXT X
1@ PMODE 3.1

15 PCLS

2@ SCREEN 141

25 LINE (@+0)-(255+181)+PSET
30 LINE (@,191)-(2535.:0) +PSET
40 GOTO 4@

Line 6 assigns X$ the value STRING$ (13,"*"")—a string of 13 asterisks.

Line 7 tells the computer to print (starting at Print Screen Location 96)
X$, then the word LINES, followed by X$ again. (See the Text Screen
Worksheet in the Appendix.) Since X$ equals 13 asterisks (*), those
characters are printed before and after LINES.

What? You want to spruce up the title even more! All right, add these
two lines:

8 Y% = STRING$(31:42): PRINT @ 384.:Y%

This time, you tell the computer to display the character represented
by ASCII Code 42. And, as you probably guessed, ASCII Code 42 rep-
resents an asterisk.

DO-IT-YOURSELF PROGRAM 31-1

Have you ever written lists to check off jobs that you or other peo-
ple have to do?

Using STRINGS$, write a program that creates a check-off list.

I Think | See Some-String Ahead!
(INSTR)

If you want to search through one string for a second string, use
INSTR.

INSTR's syntax is:

INSTR (position,search-string,target)

position specifies the position in the search-string at which
the search is to begin (0 to 255). If you omit position, the
computer automatically begins at the first character.

search-string is the string to be searched.
target is the string for which to search.

INSTR returns a 0 if any of the following is true:

. The position is greater than the number of characters in the
search-string.

. The search-string is null.

. It cannot find the target.

Watch the way INSTR works in the following program:

181

182

3 CLEAR S0@

10
15
20
23
30
33
4@
a3

S@
oo
60

CLS

INPUT "SEARCH TEXT" iS%

INPUT "TARGET TEXT"iT%

C=¢: P=1 ‘P = POSITION

F = INSTR(P:5%:T%)

IF F=0 THEN G®

C=C+1

PRINT LEFT$ (S%:F-1)+STRING® (LEN(T$) »
CHR$(12B)) + RIGHT$(5% LEN(E%) -F-
LEN(T®)+1)

P=F+LEN(T%)

IF P<=LEN(S%)-LEN(T%)+1 THEN 3@
PRINT "FOUND"3F C%# "OCCURRENCES™

The following is a sample run. However, you can input whatever text

you need.

SEARCH TEXT? YOU SHOULD TRY TO USE YOUR TRS-

8@

COLOR COMPUTER AS MUCH AS POSSIBLE.

TARGET TEST? TR

¥YOU SHOULD ##%Y TO USE YOUR TRS-89 COLOR
COMPUTER AS MUCH AS POSSIBLE

¥YOU SHOULD TRY TO USE YOUR ##S5-8¢ COLOR
COMPUTER AS MUCH AS POSSIBLE

FOUND 2 OCCURRENCES

oK

Here’s what happens:

1.

Line 15 assigns S$ (search) the value, YOU SHOULD TRY
TO USE YOUR TRS-80 COLOR COMPUTER AS MUCH AS
POSSIBLE.

Line 20 assigns T$ (target) the value of TR.

Line 30 tells the computer to start searching for T$ at the
first position (P) in S$.

In Lines 45 and 55, INSTR locates T$ and then prints and
blocks out T$ (CHR$(128)). It searches for the next occur-
rence of T$ and does the same.

Line 60 tells the computer to display the number of occur-
_rences of T$ in S$.

Y et g ims

DO-IT-YOURSELF PROGRAM 31-2

Write a program that returns the first and second occurrences of

the B in ABCDEB. _

O e e T e S

The following data storage program contains a mailing list of names
and addresses. This is an.easy way to store information. Notice that
we've saved storage space by not putting spaces between the words.
Doing so makes it difficult for you to read but not for the computer to

do so.

Notice also that we assign a leading asterisk (*) to zip codes so the
computer doesn’t confuse them with street numbers.

In this case, we're looking for the names and addresses of all individu-
als who live in the area specified by zip code 650—. Consequently,
*650 is the target (A$).

3 CLS
10 A%
20 K%

II*BSQ "

"JAMES SMITH,B550HARRISON »
DALLASTX*75002:5UE
SIMsRT3,GRAVIOSMO*B5084:LYDIA
LONGs34458MITHST »ASBURYNJ*32044 :
JOHN GARDNER »BOXG@EDMONTONALBERTACA"
"KERRY FEWELL +456BMAPLE »
NEWORLEANS*89BG7: BILL
DOLSEIN:B313E121 KANSASCITYMO*G4134:
STEVE HODGES s+ RTA4FLORENCEME*GS088

49 Z2¢ = "KAREN CROSS s314HURLEY
WASHINGTONDC*12011: ASHER
FITZGERALD »2338HARRISONFTHWORTHTX
¥76101: LIZ DYLAN BOXOOONEWYORKNY
*BEB6B6B"

So that your computer can search X$, add this line:
90 PRINT INSTR({X$ +A%)
Run the program. Your screen displays:

B2
OK

This tells you the string contains a name and address you need.

30 Y%

What about Y$? Edit Line 50 so that the computer searches through
those addresses. Does it tell you it found the needed name?

Now try Z$. Displaying a zero is your computer’s way of saying,
”There aren t any names you need on thls |ISt i

DO- IT YOURSELF PROGRAM 31 -3
Modify the mailing list program so that the following are true:

X$ contains two addresses that have a 650— zip.

The computer looks for every occurrence of *650, not
_only for the first.

Never Change Horses in Mldstrmg
(MIDS$)

MID$ statement gives you a powerful string editing capability by let-
ting you replace a portion of one string with another. The syntax of
MID$ is as foIIows

MID$ {o!dstrmg,posmon,.'englh) = newstrmg
oldstring is the variable-name of the string to replace.

position is the number of the position of the first character to
be changed.

length is a number of characters to replace. If you' omit
length, the computer replaces all of oldstring

newstring is the string that replaces the specified portion of
oldstring.

Note: If newstring has fewer characters than length specifies,
the computer substitutes all of newstring. newstring is always
the same length as o/dstring.

183

184

To see what we mean, run this program:

3 CLS

1@ A% = "KANSAS CITY» MO"
20 MID$ (A% +14)="KSE"

3@ PRINT A%

Line 10 assigns A$ the value KANSAS CITY, MO. Then Line 20 tells
the computer to use MID$ to replace part of the oldstring (A$) with KS,
starting at Position 14. '

Change Position 14 to 8 and run the program. The result is:
KANSAS CITY » MO

Now add the length option to Line 20:
20 MID$(A$ +14,2)="KG"

Notice that it doesn’t affect the result since newstring and oldstring are
both two characters long. Change length to 1:

20 MID4A(A%+14,:1)="K8"

The computer replaces only one character in oldstring, using the first
character in KS.

You'll find MID$ to be doubly effective when used with INSTR. Using
the two, you can “‘search and destroy’’ text. INSTR searches; MID$
changes or “destroys.”” The following program illustrates this:

3 CLS

19 INPUT "ENTER A MONTH AND DAY (MM/DD). "§iX$
20 P = INSTR(X&,"/")

3@ IF P = @ THEN 10

49 MID$(K$ P s1)= "-"

5@ PRINT X$¢ " IS5 EASIER TO READs ISN'T IT?"

In this program, INSTR searches for a slash (/). When it finds one,
MID$ replaces it with a hyphen (-).

DO-IT-YOURSELF PROGRAM 31-4

Pretend you worked at a telephone company in the days when
telephone exchanges were being switched from alpha-characters
to numeric-characters. Write a program that uses MID$ to replace
all alpha-exchanges with numbers. Be sure to clear enough string
space or you'll get an ?0S ERROR.

Learned in Chapter 31

BASIC WORDS CONCEPTS
STRINGS Creating a string of characters
INSTR Searching for a string
MID$ Replacing one string for another

Notes

CHAPTER 32

IN ONE DOOR AND
OUT THE OTHER

186

Input/output statements let you send data from the keyboard to the
computer, from the computer to the TV, and from the computer to the
printer. These functions are primarily used inside programs to input
data and output results and messages.

A Line Drive
(LINE INPUT)

The first input/output statement is LINE INPUT. Its syntax is as follows:

LINE INPUT “prompt” string variable
prompt is the prompting message.

string variable is the name assigned to the line that is input
from the keyboard.

LINE INPUT is similar to INPUT, except for these differences:

When the statement executes, the computer does not dis-
play a question mark while awaiting keyboard input.

Each LINE INPUT statement can assign a value to only one
variable.

The computer accepts commas and quotation marks as part
of the string input.

Leading blanks, rather than being ignored, become part of
the string variable.

With LINE INPUT, you can input string data without worrying about
accidentally including delimiters such as commas, quotation marks,
and colons. The computer accepts everything. In fact, some situations
require that you input commas, quotation marks, and leading blanks as
part of the data.

Examples:

LINE INPUT X$ (ENTER)
lets you input X$ without displaying any prompt.
LINE INPUT “LAST NAME, FIRST NAME? ";N$ (ENTER

displays the prompt “LAST NAME, FIRST NAME? " and inputs data.
Commas do not terminate the input string. Notice that the prompt in-
cludes the question mark and the following space.

To understand LINE INPUT better, enter and run the following
program:

10
20

30
4@
S0
6@
70

=1
9@

CLEAR 3@@: CLS

PRINT TAB(B)3§ "LINE INPUT STATEMENT":
PRINT

PRINT: PRINT "#%% ENTER TEXT #*%%"

C #%x% GET STRING: THEN PRINT IT ###%

A$ = ™ ‘SET A% TO NULL STRING
LINE INPUT "==3 "3 A$

IF A$ = "™ THEN END ‘IF STILL NULL
STRING+ STOP!

PRINT A%

GOTO S50

Customized Printing
(PRINT USING)

By now you know that the more you work with your computer, the
more it can work for you. For instance, maybe you want to create a ta-
ble that uses numbers, but you don’t want to type the plus and minus
signs repeatedly.

PRINT USING makes short work of this kind of problem by enabling
the computer to print strings and numbers in a “customized’’ format.
This can be especially useful for accounting reports, checks, tables,
graphs, or other output that requires a specific print format.

Here is PRINT USING's syntax:

PRINT USING format;item-list

format is a string expression that tells the computer the for-
mat to use in printing each item in item-list. It consists of
“field specifiers’”” and other characters and is one (or one
set).

item-list is the data to be formatted.

Note: PRINT USING does not automatically print leading
and trailing blanks around numbers. It prints them only as
you indicate in format.

e B T T A B BT T A T TR — e —— T

You may use the following field specifiers as part of format: R R R
[The examples in the field
$$ _ | specifier list are in the im-
’ “xg A | mediate mode but may be
L 4 | | incorporated into a pro-
: ' gram line.

187

188

Below is an explanation of each field specihier, ollowed by examples

of its use.

#

*k

A number sign specifies the position of each digit in the
number you enter. The number of number signs establishes
the length of the numeric field.

If the field is larger than the number, the computer displays
the unused positions to the left of the number as spaces and
those to the right as zeros.

PRINT USING "#uuaa"i B6.2
66

If the field is too small for the number, the computer dis-
plays the number with a leading % sign.

PRINT USING "#"3§ GGB.2
%GB

You can place the decimal point at any field location that
you established with the number sign. The computer auto-
matically rounds off any digits to the right of the decimal
point that don't fit into the field.

PRINT USING "#,%#"3 G6.+25 (ENTER
4BG. 3

PRINT USING "##,#"3 58,76
58.8

PRINT USING "##,##
"i10.2+5.3:66.789,.234
12,20 5.32 BG.79 0.23

Note: In the last example, format contains three
spaces after the final number sign. These spaces sepa-
rate the numbers when the computer displays them.

The comma, when placed in any position between the first
digit and the decimal point, displays a comma to the left of
every third digit. The comma establishes an additional posi-
tion in your numeric field. To avoid an overflow (indicated
by a leading percent sign), place a comma at every third
position in the numeric field. Overflows occur when the
field isn’t large enough.

PRINT USING "s##s#uss#uss,"5 12345678
12,345,678

PRINT USING "s#u#ssuasss,"§ 123456789
w123,456,789

PRINT USING "#u#,uus, 888" 123456789
123+456.,789

When you place two asterisks at the beginning of the nu-
meric field, the computer fills all unused positions to the left
of the decimal with asterisks. The two asterisks establish
two more positions in the numeric field.

PRIMNT USING "#*####"3 44,0
*x¥xd4

$$

**$

Placing a dollar sign ahead of the numeric field causes
the computer to place a dollar sign ahead of the
number when displaying it. This, of course, is handy
when you are working with money.

PRINT USING "$###,##"3 18,6735
$ 18,67

Two doilar signs placed at the beginning of the field cause
the computer to display a floating dollar sign immediately
preceding the first digit.

PRINT USING "$$##,##"35 18,6735
$18.67

You can place this combination of symbols at the beginning
of the field also. If you do, the computer fills the vacant po-
sitions to the left of the number with asterisks and places a
dollar sign in the position immediately preceding the first
digit.

PRINT USING "*x*%,##"35 8,333

*#$8,33

When you place a plus sign at the beginning or end of the
field, the computer precedes all positive numbers with a
plus sign and all negative numbers with a minus sign.

PRINT USING "+*x#uuus"ji 75200
*%+73200

PRINT USING "+###"j -216
-216

When you place a minus sign at the end of the field, the
computer follows all positive numbers with a space and
precedes all negative numbers with a minus sign.

PRINT USING "#waw.,.#-"3 -8B124,420
8124.4-

PRINT USING "% 4"3% "BLUE'S STORE"
BLUE'S

To see PRINT USING in use, run the following program:
5 CLS

10
20
3@
40
S0
6o
70
80
g0

A% = "*x$uu uanusn, #w DOLLARS"
INPUT "WHAT’S YOUR FIRST NAME" 3§ F&%
INPUT "WHAT’S YOUR MIDDLE NAME": M$
INPUT "WHAT’S YOUR LAST NAME"S L4
INPUT "ENTER THE AMOUNT PAYABLE"3 P
cLS

PRINT "PAY TO THE ORDER OF ";

PRINT USING "I"3F$35" . "M$i", "3
PRINT L%

109 PRINT: PRINT USING A%3 P
11 GOTD 110

Line 10 defines the format, using **$ to fill the leading spaces with as-
terisks and placing a dollar sign directly before the first number. This
format is sometimes used to protect checks from being altered.

| Do you have all that
| memorized?

To learn more about
PRINT USING, experiment
with this program:

5 CL8

i@ INPUT
“"FORMAT" iF%

2@ INPUT "ITEM-
S

39 PRINT USING
F$il

48 GOTO 5

This works fine for numeric
data. For string data,
change | in Lines 20 and
30 to 1$.

189

1 Net results? Is this tennis or
| big business?

190

Line 10 also sets up the numeric field using the # sign. Thus, when-
ever you enter a number that is smaller than the numeric field, the
computer precedes the number with asterisks to fill the unused spaces.
Included in Line 10 are two more field specifiers, the decimal point
and the comma.

The computer displays the decimal point at only those positions speci-
fied. Because you tell the computer to include two places to the right
of the decimal (for cents), the computer rounds all numbers of more
than two digits to two digits. If you enter a number that has one or no
digits to the right of the decimal point, the computer inserted zeros.

The exclamation marks in Line 80 tell the computer to use only the
first character (the initial} of F$ (your first name) and of M$ (your mid-
dle name).

L e et e

DO-IT-YOURSELF PROGRAM 32-1

Change the program so that no leading asterisks appear on the
check.

e

DO-IT-YOURSELF PROGRAM 32-2

Write a program that creates a table showing your income and ex-
penses on a monthly basis. Don't bother to itemize your expenses;
just calculate the totals and the net result (plus or minus).

e

| Use STRING$ to organize the table, making it flexible enough so
you can use it month after month without changing the entire |
program. b

R

POS

POS is an input/output function that returns the current cursor position
on the screen or the carriage position on the printer. Here is its syntax:

; POS (device number) |
g; device number is 0 (screen) or —2 (printer) |

PRINT TAB (8) POS(0)
returns the number 8 at Column 8 in the current line.

Note: The leading space before ‘'8 causes it to appear in Col-
umn 9.

One way to use POS is to disable the ““wrap-around’’ feature on the
screen or the printer. Doing this prevents words from being broken in
the middle. On the other hand, it necessarily shortens the line length.
Run the following program to see POS at work:

5 CLs
10 A% = INKEY%
20 IF A$ = "" THEN 1@

3@ IF PDS (@) » 22 THEN IF A% = CHR$(32) THEN
A%=CHR$(13)

49 PRINT A%S

3¢ GOTO 10

This program lets you use the keyboard as a typewriter (except that
you can’t correct mistakes unless you first disable the printer). POS
watches the end of the line so no word is divided.

In Line 30, the computer checks to see if the “current’” cursor position
is greater than Column 22. (The screen is 32 columns wide.) If the cur-
sor passes Column 22, the computer begins a new line the next time
you press the space bar (CHR$(32)). When the computer decides to
begin a new line, it does so by printing a carriage return (CHR$(13));
in effect, the computer presses (ENTER).

DO-IT-YOURSELF PROGRAM 32-3

Write a program that uses POS to space words evenly on a single
line.

De-Vice Squad

Did you ever think of your video display as an ““output’’ device and
your keyboard as an “input’”’ device?

With PRINT, PRINT USING, LINE INPUT, and POS, you can use de-
vice numbers to direct input or output. For instance, suppose you type:

PRINT #-2 USING "#u##, 888" 3i123,45678 (ENTER
The screen remains “silent” while the printer prints:
123,456

You can use any of the available field specifiers with PRINT #-2,
USING.

POS(-2) returns the printer’s current print position (the current carriage
position). Run the following program:

5 CLS

18 FOR I =1 TO 1@

20 PRINT #-2, "%"3

3@ PRINT "PRINTER POS="35 POS(-2)
40 NEXT I

S50 PRINT #-2,"

The screen shows the print carriage position as it changes. Note that
the position is figured internally, not mechanically. Most printers can’t
print until Line 50 executes.

| to complete a long word.

position 22 since it was 10
spaces less than the maxi-

| mum screen width, 32;

that gives plenty of room

| We chose to test cursor

191

LINE INPUT # works similarly, with the one difference that it lets you
read a “line of data” from a cassette file.

LINE INPUT # reads everything from the first character up to which-
ever of the following comes first:

. A carriage-return character that is not breceded by a line-
feed character

The 249th data character
The end-of-file

Other characters encountered (quotes, commas, leading blanks, and
line feed/carriage return sequences) are included in the string. For
instance:

LINE INPUT #-1,A$
inputs a line of cassette file data into A$.

The following program uses LINE INPUT # to count the number of
lines in any cassette-stored program that is CSAVEd in ASCII format
(using the A option):

10 CLEAR 500

20 LINE INPUT "NAME OF DATA FILE? "iF%
3¢ K=@ ‘K IS THE COUNTER

40 OPEN "I",-1+F$%

5¢ IF EOF (-1) THEN 100

60 LINE INPUT #-1, A%

70 K=K+1

80 PRINT A%

9¢ GOTOD 50

100 CLOSE#-1

11¢ PRINT "FILE CONTAINED"5K3i"LINES"

= 1
Learned in Chapter 32 :
BASIC WORDS CONCEPTS
LINE INPUT Inputting a line from the keyboard
PRINT USING Displaying strings and numbers in a cus-
tomized format
POS Determining the current cursor position or
the current carriage position E
Notes

192

CHAPTER 33

A LITTLE BYTE
OF EVERYTHING

This chapter contains a hodge-podge of Extended Color BASIC features
that don't fit neatly into categories but that, nonetheless, can be very
helpful.

LET

Many versions of BASIC require that you use LET whenever you assign
a value to a variable as in the statement LET X=5. Although extended
Color BASIC does not require LET, you may want to use it anyway.
One reason is to ensure compatibility with those versions of BASIC
that do require it.

For example, these statements are the same:
10 LET A$ = "A#"
10 A% = “A#”

TRON/TROFF Commands

TRON (“trace on”’) and TROFF (“trace off”’) are debugging aids that
help you trace the execution of program statements.

TRON turns on a “tracer’” that displays each line number of the pro-
gram as it is executed. The numbers appear enclosed in brackets.
TROFF turns off the tracer.

Examples:

TRON (ENTER
TROFF (ENTER

193

194

Trace the execution of the ““Lines” program. Type TRON (ENTER.
Then run the program:

5 PCLS

1@ PMODE 31

20 SCREEN 1,1

30 LINE (0,0)-(255+191) +PSET

The computer displays:

(3) (1@) (20) (30)
Ok

This display indicates that the program first executed Line 5, then 10,
20, and finally 30. Remember to type TROFF (ENTER) to turn off the
tracer.

Time After Timer . ..
(TIMER)

Your computer also has a built-in “timer’’ that measures time in six-
tieths of a second (approximately). The moment you power-up the
computer, the timer begins counting at zero. When it counts to 65535
(approximately 18 minutes later), the timer starts over at zero. It pauses
during cassette and printer operations.

At any instant, you can see the count of the timer by using the TIMER
function. Type:

PRINT TIMER

The TIMER function displays a value from 0 to 65535.

You can also reset the timer to any specified time by typing:
TIMER = number

number is in the range 0 to 65535.

To see TIMER (and PRINT @ USING, another “new’’ function), run the
following program called ““Math Quiz.”” It presents you with a math
problem. When you press (A), (B), (€), or (D), the computer tells
you whether the answer is right or wrong. Then the computer uses the
timer to tell you the time you took to answer (using TIMER).

1@ DIM CH(3) +L$(3) ‘CH(#)=CHOICES:
L=ANSWER FORMATS

20 LL=10:UL=20 ‘LOWER LIMIT AND UPPER LIMIT
FOR H AND Y

30 NVU=UL-LL+1

49 PE="WHAT 'S ### + ### 7" 'QUESTION FORMAT

50 FOR I = @ TO 3 “INITIALIZE CH()

GO L$(I)=CHR$(I+B3)+") #u#u"

70 NEXT I

80 CLS

90 X=INT(RND(NY(+LL-.5) ‘GET RANDOM X
BETWEEN LL AND UL

100 ¥Y=INT(RND(NW)+LL-,3) ‘GET RANDOM Y

BETWEEN LL AND UL
110 R=INT(X+Y¥+,5) ‘'CORRECT ANSWER

130 FOR I = @ TO 3 ‘GET MULT. CHOICES
140 CH(I)=INT(RND(NUV)+LL-.5)
130 NEXT I
160 RC=RND(4)-1 'MAKE ONE CHOICE RIGHT
170 CH(RC) =R
180 PRINT @ 32, USING P$iX ¥
"DISPLAY PROBLEM
19¢ FOR LN=3 TO B
200 PRINT @ LN # 32+10,USING L&(LN-3) iCH
(LN-3)
219 NEXT LN
220 TIMER = @

230 A%=" " 'CLEAR KEYBOARD

240 As=INKEY®: IF As="" THEN 240

230 5V=TIMER 'IF KEY PRESSED: SAVE TIMER
CONTENTS

260 IF As<"A" OR A%:"D" THEN 24@ ‘INVALID
KEY-GO BACK

ZB5 PRINT B B * 32+12,:A%

270 K=ASC(A%)-BS

280 IF CH(K)=R THEN PRINT "RIGHT!": GOTO 320

290 PRINT "WRONG! ANSWER IS "5 R

300 PRINT "YOU TOOK"3 SU/603 "SECONDS"

310 INPUT "PRESS <ENTER> FOR NEXT PROBLEM" 3
EN

320 GOTO 80

Through trial and error, change the upper and lower limits (Line 20)
for h and v. Make the program perform a mathematical operation other
than addition or have the computer keep score, based on your time.
Add 5 seconds for each incorrect answer.

Hexadecimal and Octal Constants

Extended Color BASIC lets you use both hexadecimal and octal
constants.

Hexadecimal numbers are quantities represented in Base 16 notation,
composed of the numerals 0 to 9 and the ““numerals’” A to F. Hexa-
decimal constants must be in the range 0 to FFFF, corresponding to the
decimal range 0 to 65535.

To indicate that a number is an octal constant, precede it with the
symbol &H, as shown here:

&HAO010 &HFE &HD1 &HC &H4000

Octal numbers are quantities represented in Base 8 notation, com-
posed of the numerals 0 to 7. Octal constants must be in the range 0
to 177777. The computer stores them as two-byte integers that corre-
spond to the decimal range 0 to 65535.

To indicate that a number is an octal constant, precede it with the
symbol &O or &, as shown here:

&070 &0O44 U1777 &7170 &17 &0O1234

The use of ““hex’” and octal constants is convenient in programs that
reference memory locations and contents. For further information, read
a book on machine-language programming.

195

HEX$
To convert a number from decimal to hexadecimal, use HEX$. The
syntax is as follows:

HEX$ (number)
number is a decimal number of variable from 0 to 65535.

For example, the following program displays the hexadecimal value of
any decimal number smaller than 65536. It returns a string that repre-
sents a hex value.

5 ELS
18 INPUT "IF A NUMBER’'S DECIMAL VALUE IS"3
DEC

20 PRINT "ITS HEXADECIMAL VALUE IS "
HEX$ (DEC)

Learned in Chapter 33

BASIC WORDS CONCEPTS

LET Using LET to make programs compatible
with other versions of BASIC

TRON, TROFF Using the tracer to follow the execution
of program statements

TIMER Keeping track of and changing the time
In a program

HEX$ Converting a number from decimal to
“hexadecimal

Notes

196

Chapter 34

USING MACHINE-
LANGUAGE SUBROUTINES

“Machine-language’” (ML) is the low-level language that your computer
uses internally. It consists of microprocessor instructions. ML subroutines
are useful for special applications simply because they can do things
much faster than BASIC.

Writing such routines requires familiarity with assembly-language pro-
gramming and with the microprocessor’s instruction set. For more infor-
mation, see 6809 Assembly Language Programming, Lance Leventhal,
Osborne/McGraw Hill, 1981.

This section follows the step-by-step approach for using ML subroutines:

. Protecting Memory

. Storing the ML Subroutine in Memory
. Telling BASIC Where the Subroutine Is
. Calling the Subroutine

. Returning to BASIC

We present a sample BASIC program that performs all five steps. You
may type in the BASIC program lines as they are given, but don't try to
run the program until you've read all the steps.

oo —

(%)

Our ML subroutine is simple. It gets a character from the keyboard.
Then it returns the ASCII code for this character to the BASIC program.
An assembly-language listing of this routine is later in this section.

Our ML subroutine has a few features not available with BASIC's IN-
KEY$ or INPUT statements. First, it returns any key code, including the
one for (BREAK). Second, it lets you key in control codes A-Z (CTRL-A
through CTRL-Z).

To key in a control character, press (£), release it, then press any key
from (A) to (Z). The control codes generated range from 1 to 26.

197

198

STEP 1. PROTECTING MEMORY

With the CLEAR statement, you can reserve a section of memory for
storing your ML subroutine. The first CLEAR parameter sets the string
space; the second sets the memory protection address. For example:

5 CLEAR 25 12000

sets the string space to 25 bytes and reserves memory addresses from
12000 to the end of memory (see the Memory Map). You can now
safely store your ML subroutine in this area.

STEP 2. STORING THE ML SUBROUTINE IN MEMORY

You can load an ML subroutine from tape (via CLOADM), or you can
poke it into memory (using the BASIC POKE statement). In our example,
we'll store the individual machine codes in DATA statements, then read
and poke each code into the correct memory address. The codes are in
the ML subroutine’s assembly listing, shown later in this section.

20 FOR I =1 TOD 28

30 READ B: POKE 12000 + I:+ B

4@ NEXT 1

50 DATA 173+ 1589, 160, O

6@ DATA 39, 2560, 129, 1@, 38 12
7@ DATA 173+ 159, 160, @, 39 Z50
75 DATA 129, B5+ 45 2

B® DATA 128+ B4+ 31+ 1374 79

9% DATA 126, 182, 244

STEP 3. TELLING BASIC WHERE THE SUBROUTINE IS

Before you can use the ML subroutine, you have to tell BASIC where
the routine starts. Do this with the DEFUSR statement, which has this
format:

DEFUSRn = address tells where, in memory, an ML subroutine
starts

n is the number of the ML subroutine (0-9).
address is the first address in memory where the ML subrou-

4
j tine is stored.

In this example, the ML subroutine (which we’ll call ML Subroutine 1)
is stored in memory starting at Address 12000. To tell this to BASIC, use
this statement:

1@ DEFUSR1 12000

STEP 4. CALLING THE SUBROUTINE

To “call’”” the ML subroutine, use the USR function with this format:

dummy variable = USRn(argument) calls an ML subroutine

n is the number of the ML subroutine (0-9).

| argument is a value you want to pass to the ML subroutine.

'} dummy variable is a variable you can use to store the data
returned by USR.

For example:
118 A = USR1(D)

calls ML Subroutine 1 and passes it Argument 0. In this example, 0 is a
“dummy argument!” The ML subroutine won’t use it. (The purpose of
Variable A is explained in the next step.)

STEP 5. RETURNING TO BASIC

If you want to return a specific integer value to BASIC, as we do in this
example, your ML subroutine must: (1) load the integer into Register D,
(2) end by calling GIVABF, a special ROM subroutine. GIVABF causes
your BASIC program’s USR function to “‘return;” replaced by the integer
you stored in Register D.

In this example, our ML subroutine loads the key you press into Register
D and then calls GIVABF. This causes USR to return replaced by the key
you press. Since Variable A equals the value USR returns, Variable A
equals the key you press.

If you don’t want to return a specific value to BASIC, end the subroutine
with an RTS instruction. USR “returns”” your original dummy argument
(0).

The BASIC Program

This is the entire program with the ML subroutine poked into memory.
Type it in carefully; then run it.

Each time you press a key, control returns to BASIC with the ASCII code
for that key. Try pressing (BREAK). You'll get the code for (BREAK) 3. The
BASIC program ends when you press or () (M)

To get any of the codes 1 through 26, press (1), release it, then press a

key from (A) to (Z).

5 CLEAR 25 12000 ‘RESERVE MEMORY

10 DEFUSR1=1200015 CLS

20 FOR I = 1 TOD 28 "STORE EACH BYTE OF OBJECT
CODE

390 READ B: POKE 12000 + 14+ B

48 NEXT I

45 'HERE IS THE OBJECT CODE

5@ DATA 173+ 159, 162, @

6@ DATA 39, 25@, 129, 10, 38, 12

7@ DATA 173, 139, 160 @+ 39, 250

75 DATA 129, BS s 45, 2

80 DATA 128, B4y 31, 1374+ 79

90 DATA 126, 180 244

93 ‘TELL BASIC WHERE THE ROUTINE IS

1@ POKE 275, 15: POKE 276 211

112 A = USR1(@) ‘CALL THE SUBROUTINE AND GIVE
RESULT TO A

115 IF A = 13 THEN END

120 PRINT "CODE ="3 A

139 GOTD 110

For a variation in the program, change line 120 to:
120 PRINT CHR$(A) 3 ‘DISPLAY THE CHARACTER

Most control keys () followed by a key) have no effect when printed.
Try (A0 (), though, and you see the cursor backspace.

[The address of GIVABF is

Hexadecimal B4F4 or Deci-
mal 46324. However, if you
have Advanced Color
BASIC or Extended Color

| BASIC Version 1.2 or later,

this address may have been
changed.

If you have a Deluxe Color
Computer, use the (CTRD

| key, rather than ().

199

Assembly language is not
meaningful to the com-
puter. It is a set of memory
aids and symbols we use
for convenience. Assembly
language must be trans-
lated, or “assembled,” into
machine code, which the
computer understands. In
the listing above, the ma-
chine code is given in hex-
adecimal form. We
converted it to decimal
numbers for our BASIC
program.

The address of INTCNV s
Hexadecimal B3ED. How-
ever, if you have Advanced
Color BASIC or Extended
Color BASIC Version 1.2 or
later, this address may have
been changed.

200

ML Subroutine Listing

This is the assembly-language listing of our ML subroutine example. To
use it, you must have an assembler, such as EDTASM (Catalog #26-
3250) or Disk EDTASM (Catalog #26-3254). You can’t use this assem-
bly-language listing from BASIC.

Hexadecimal Source Code Comments

Object Code
iPOLL FOR A KEY

AD 9F A® @@ LODOP1 JSR (POLCAT)

27 FA BEQ LOOP1L i1F NONE:s RETRY

81 04 CMPA =10 SCTRL KEY (DN
ARW)?

26 @C BNE OUT iNO s S0 EXIT

AD 9F AQ® @0 LOOPZ JBR (POLCAT) 3YES., S0 GET NEXT
KEY

27 FA BEW LOOPZ iIF NONE s RETRY

81 2@ CMPA #GS iI5 IT A - 27

2D @z BLT 0OUT yIF < Ay EXIT

B0 49 SUBA =G4 sCONVERT TO CTRL
Az

1F 89 ouT TFR AB sGET RETURN BYTE
READY

4F CLRA iZERD MSB

7E B4 F4 JMP GIVABF iRETURN VALUE TO
BASIC

POLCAT EGU 409Go

GIVABF EQU 4B6324

Passing Values to an ML Subroutine

USING THE INTCNV ROUTINE

If you want to pass an integer to your ML subroutine, use the integer as
the “argument”” in your USR function. For example:

A=USR1(3)

calls Machine Code Program 1 and passes the argument 5 to it. You
can then call the INTCNV routine, which gets the integer and stores it
in Register D.

USING THE VARPTR FUNCTION

Another way to pass an argument to your ML Subroutine is to pass a
“pointer” to the address where a variable’s value is stored. You can do
this with the VARPTR function:

VARPTR variable returns a pointer to where the variable's value is |
stored

For example:
A=USR1(UARPTR(B))

calls ML Subroutine 1 and passes a pointer to Variable B's address. The
pointer is stored in Register X. Your ML subroutine needs to know
whether the variable is string or numeric.

If the variable is string, your ML subroutine can find the string’s 5-byte
descriptor in Register X. This descriptor tells where the string is:

Byte 1 = the length of the string (in characters)

Byte 2 = reserved for the computer’s use

Bytes 3 and 4 = address of the first byte in the string
Byte 5 = reserved for the computer’s use

If the variable is numeric, your program can find the address of the
number’s floating point value in Register X. This floating point value has
this format:

Byte 1 = the exponent of the mantissa
Byte 2 = the mantissa’s most significant byte (MSB)
Byte 3 = the mantissa’s next MSB

Byte 4 = the mantissa’s next MSB
Byte 5 = the mantissa’s least significant byte (LSB)

The exponent is a signed 8-bit integer with 128 decimals added to it.
An exponent of 0 means the number is 0, in which case the mantissa is
insignificant. The exponent’s most significant bit stores the exponent’s
sign: 0 if positive, 1 if negative.

The mantissa is stored in normalized form with the most significant bit
of the mantissa’s MSB assumed to be 1. This bit can indicate the man-
tissa’s sign: 0 if positive, 1 if negative.

You may want to use VARPTR to pass an array variable’s pointer to an
ML subroutine. For example:

A=USR1I(VARPTR(B(3))
calls ML Subroutine 1 and passes a pointer to Array B’s Element 5.

Your ML subroutine can find the elements’ values in memory as follows
(from low to high memory):

Value of first element of last dimension

. Value of last element of last dimension
. Value of first element of first dimension
- Value of last element of first dimension

Each element is five bytes long.

Returning Values to BASIC

USR always returns at least one value to BASIC. This value is the argu-
ment you originally pass to the ML subroutine, unless your ML subrou-
tine changes or modifies it, as described below.

USING GIVABF TO RETURN AN INTEGER

To return a specified integer to BASIC, you can have your ML subroutine
load the integer into Register D and call GIVABF, as demonstrated
earlier.

MODIFYING BASIC VARIABLES

You can return any specified value to BASIC by having your ML subrou-
tine modify a BASIC variable’s value. For example, assume you call an
ML subroutine with this statement:

201

202

As=(USRI(VARPTR(B%))

You can have your ML subroutine modify B$'s value and then end the
routine with an RTS instruction. This causes USR to return with B$'s
modified value.

If your ML subroutine modifies a string variable, be careful of the
following:

Although you can change a string descriptor’s length byte to
“shorten’” a string, you cannot “‘lengthen’” a string. If you
don’t know what size string your ML subroutine will return,
reserve 255 bytes (the maximum size) for the string’s value
before passing it to the ML subroutine. For example:

B$=STRING$(Z55)
A% = USRO(VARPTR(B%))

passes a pointer to a 255-character string of blank spaces to
the USR function. The ML subroutine can then put a string
of up to 255 characters into the memory pointed to by B$ or,
if necessary, shorten the string’s length byte.

. You can modify the starting address of a string by changing
the 2-byte pointer in the string descriptor. When you do this,
though, we recommend the new starting address be an ad-
dress included in the original string.

You can swap the starting addresses of two strings. This may
be useful for sorting strings. If you do this, though, be careful
not to “intersect’” two strings.

If your ML subroutine modifies a variable that already points
to a string literal, this will change your BASIC program. For
example, assume you have this statement in your BASIC
program:

B$ = "ABC"

If your ML subroutine modifies B$, your BASIC program is
changed. To avoid this problem, add a null string (') to any
string literal that your ML subroutine will modify. For
example:

B$ = iIABEII ES nn

The null string forces BASIC to copy the string into string
space, where your ML subroutine can safely modify it.

Using Stack Space

An ML subroutine, called by USR, that requires more than 30 bytes of
stack storage must provide its own stack area. Save BASIC's stack
pointer upon entry to the USR function, setting up a new stack pointer
and restoring BASIC's stack pointer prior to returning to BASIC. The val-
ues of the A, B, X, and CC registers need not be preserved by USR.

Notes

SECTION V

ODDS AND ENDS

SUGGESTED ANSWERS

TO DO-IT-YOURSELF
- PROGRAMS

Do-It-Yourself Program 4-4

Sounding tones from bottom of range to top and back to bottom:

10 FOR X = 1 TD 235

20 SOUND X1

30 NEXT X

4% FOR X = 255 TO 1 STEP -1
5@ SOUND X1

6@ NEXT X

Do-It-Yourself Program 5-2

Lines added to clock program:

92 FOR T = 20@ TO 21® STEP 5
94 SOUND Ts1

93 NEXT T

97 FOR T = 21@ TO 20® STEP -5
98 SOUND T+1

899 NEXT T

Do-It-Yourself Program 5-3
19 FOR C = @ TO 8
20 CLS(C)
3@ FOR X = 1 T0O 4G6¢@
4@ NEXT X
2@ NEXT C

Do-It-Yourself Program 7-2

SFORN=1T0 10

19 PRINT "CHOOSE ¥YOUR CHAMBER(1-1@)"

20 INPUT X

30 IF X = RND(1@) THEN 10@
4¢ SOUND 200 1

5@ PRINT "--CLICK--"

6@ NEXT N

BS ELS

79 PRINT @ 23@, "CONGRATULATIONS!!II"

80 PRINT @ 265, "¥Y0OU MANAGED"
9¢ PRINT @ 296+ "TO STAY ALIVE"
93 END

100 FOR T = 133 TO 1 STEP -5
11@ PRINT "BANGIII 1"

120 SOUND T» 1

130 NEXT T

14@¢ CLS

15@ PRINT @ 230+ "SORRY s YOU'RE DEAD"

16G@ SOUND 1+ 50

170 PRINT @ 290, "NEXT VICTIM PLEASE"

207

Do-It-Yourself Program 7-3

i@ CLS

20 A = RND(B)
30 B = RND(G)
40 R = A+ B

5@ PRINT @ 200, A
6@ PRINT @ 2144+ B
7% PRINT @ 394, "¥0U ROLLED A" R

8@ IF R = 2 THEN G0OO
9@ IF R = 3 THEN Go@
10@ IF R = 1Z THEN GO®
116 IF R = 7 THEN 300
120 IF R = 11 THEN 500

130 FOR X = 1 TO BOO

140 NEXT X

15@ CLS

160 PRINT @ 185, "ROLL ANOTHER" Rk "AND YOU
WIN

17@¢ PRINT @ Z6Z, "ROLL A 7 AND YOU LOSE"

180 PRINT @ 42@¢, "PRESS “ENTER:* WHEN READY"

185 PRINT @ 456, "FOR YOUR NEXT ROLL"

190 INPUT A%

200 X = RND(G)
210 Y = RND(B)
220 Z = X + Y
225 CLS

230 PRINT B 200, X

249 PRINT @ 2144 ¥

250 PRINT @ 394 "¥YOU ROLLED A" Z
260 IF 2 = R THEN 509

270 IF Z = 7 THEN G@0

280 GOTOD 180

S00 FOR X = 1 70O 1000

510 NEXT X

S15°CLS

SZ2@ PRINT @ 230 "YOU'RE THE WINNER"
53¢ PRINT @ 294, "CONGRATULATIONG! 1Y
49 GOTO B30

6@® FOR X = 1 TO 1000

619 NEXT X

615 CLS

629 PRINT @ 264, "SORRY » YOU LOSE"
63® PRINT @ 458, "GAME’'S OVER™

Do-It-Yourself Program 8-2

5 CLS
B PRINT @ Z3@ . "YODUR NAME";
B INPUT N%

10 CLS

15T
20 X
30 Y

T+ 1
RND(100)
RND(10@)

nonmon

208

49 PRINT @ 228, "WHAT IS" X "+" ¥3

43 INPUT A

S0 IF A = X + ¥ THEN BZ

E® PRINT @ 326 "THE ANSHWER IS" X + Y

79 PRINT @ 385, "BETTER LUCK NEXT TIME:" N%

80 GOTO 100

82 CLS(7)

83 FOR M =1 TOD 4

84 SOUND 17354 1

B85 SOUND Zo@ ., 1

B6 NEXT M

87 CLS

90 PRINT @ 232, "CORRECT +" N& "1 0 L"

gs C=0C+ 1

87 PRINT @ 289, "THAT IS"

98 PRINT @ 322, C "OUT OF" T "CORRECT
ANSWERS"

98 PRINT @ 3BZ: C/T#10@@ "% CORRECT":IF T=1@ THEN

END

10@ PRINT B 420, "PRESS “ENTER> WHEN READY"

192 PRINT @ 458, "FOR ANDTHER"

195 INPUT A%

119 GOTD 1@

Do-It-Yourself Program 10-1

9 ELE

7 PRINT @ 38, "TABLE OF SQUARES"

8 PRINT

i@ P = 2

20 FOR N = 2 TD 1@

23 GOSUB 2000

32 PRINT N "#" N "=" E,

49 NEXT N

30 END

Z0@0® REM FORMULA FOR RAISING A NUMBER TO A
POWER

2010 E = 1

2020 FOR X = 1

2030 E = E ¥ N

2041 NEXT X

2050 IF P

2060 RETURN

@ THEN E = 1

Do-It-Yourself Challenger Program (Chap. 11)

1 PRINT "TYPE A SENTENCE :"

15 INPUT S%

2@ PRINT "TYPE A PHRASE TO DELETE"
23 INPUT D%

25 L = LEN(D%)

39 PRINT "TYPE A REPLACEMENT PHRASE"
35 INPUT R%

49 FOR X = 1 TO LEN(S%)

S@ IF MID$(S%,X+L) = D& THEN 100

209

6@ NEXT X

7@ PRINT D% "-- IS NOT IN YOUR SENTENCE"
8@ GOTO 20
1¢0 E = X - 1 + LEN(D%)

110 NS$ = LEFT$(5%,X-1) + R$ +
RIGHT$(S%,LEN(S%) - E)
120 PRINT "NEW SENTENCE IS "

130 PRINT NEs

Do-It-Yourself Program 14-2

5> PMODE 141

1@ PCLS

20 SCREEN 1.1

30 X RND(Z256) -1
4@ Y RND(192)-1
30 C RND(9) -1
B@ PSET (XY ,C)
7@ GOTO 30

mnon

Do-It-Yourself Program 15-1

S PMODE 11

1@ PCLS

20 SCREEN 1.1

25 LINE (2:02)-(2554+191) +PSET

30 LINE (@,191)-(255,8) :PSET

35 LINE (1@+10)-(255+191) +PSET +B
49 GOTO 49

Do-It-Yourself Program 15-2

5 PMODE 1.1

1@ PCLS

20 SCREEN 141

30 LINE (724+168)-(200:72) »

PSET :B ‘FRAME
49 LINE (724+72)-(136:36) »
PSET 'ROOF
45 LINE (200,:72)-(136:+386) »
PSET ‘ROOF
5@ LINE (120,168)-(132,100) »
PSET +B ‘DOOR
33 LINE (132:60)-(1688:3B6)
PSET :BF ‘CHIMNEY
6@ LINE (165:128)-(191.:10@)
PSET +B ‘WINDOW
B3 LINE (178:12B)-(178,10@)
PSET ‘WINDOW PART
70 LINE (163:114)-(0191,114)
FSET "WINDOW PART
73 LINE (85:128)-(111,100) »
PSET :B "WINDOW

210

B@ LINE (BS,114)-(0111+114)
PSET "WINDOW PART
85 LINE (98,109)-(88B,128) »
PSET 'WINDOW PART
9¢ GOTO 9@
Do-It-Yourself Program 15-3
2 PMODE 1.1
1@ PCLS
20 SCREEN 11
30 V=0
49 FOR X = @ TO 20@ STEP 1@
59 Oy = Y
B@ Y = 30-0VY
70 LINE (K100 -Y)-(X+10,:100-0Y) +PSET
8@ NEXT
9@ GOTO 98
Do-It-Yourself Program 16-1
1Y = -1
5 CLS
1¢ PRINT B 193.,"D0 YOU WANT TOD SEE A SQUARE™?"
20 FOR ® = 1 TO 12@@: NEXT X
3@ PMODE 1 +1
35 PCLS
49 SCREEN 1Y¥+1
B@ LINE (75:15@)-(15@.:73) +PSET B
7@ FOR X = 1 TO 12@@: NEXT X
73 Y = =Y
g@ GOTO 5
Do-It-Yourself Program 18-1

Make the following changes:

22
32
4z

PCOPY 4 TO 3
PCOPY 3 TO 2
PCOPY 2 TO 1

Delete Lines 11, 21, and 31.

Do-It-Yourself Program 18-2

i@
20
25
30
ae
43
50

PCLEAR B
PMODE 41
PCLS

SCREEN 1,1 :

LINE (@.,@)-(255+191) PBET
FOR ¥ = 1 TO 20: NEXT Y
PMODE 442

21

53 SCREEN 1.0

6@ LINE (@,@)-(255,101)+PSET
65 FOR Z = 1 TO 2@: NEXT Z

7@ PMODE ©.3

73 SCREEN 141

80 LINE (@.,0)-(255,181)PSET
85 FOR A = 1 TO Z@: NEXT A

99 PMODE 1.4

95 SCREEN 151

96 PCLS

1@ LINE (@:0)-(255,181) +PSET
105 FOR R = 1 TO 20: NEXT R
11 GOTO 2@

Do-It-Yourself Program 19-1

1¢ PMODE 4,1

2@ PCLS

3@ SCREEN 140

49 FOR RADIUS =1 TO 10@ STEP 1@
5@ CIRCLE (128, 9B) sRADIUS

B@ NEXT RADIUS

7@ GOTO 70

Do-It-Yourself Program 19-3

5 PMODE 431

1@ PCLS

20 SCREEN 1,0

30 CIRCLE (Z00,40) s304+4+14+.134+.63
49 CIRCLE (23@+10) s524+314+.,29,.48
5@ GOTO 50

Do-It-Yourself Program 19-4

5 PMODE 1.1

19 SCREEN 1.0

15 PCLS 3

20 COLOR 1.0

25 CIRCLE (200 +4@) +30,+:14+,13».63 ‘MOON

30 CIRCLE (Z2304+10) +324+4+1:+,29,,48 ‘MOON

35 LINE (100:18B5)-(18B0+125) +PBET+B
‘HOUSE FRAME

49 LINE -(140,85) ,PSET 'ROOF

45 LINE -(100,125) +PSET 'ROOF

55 LINE (110,160)-(125,130) »PSET B
‘WINDOW

B@ LINE (155,160)-(17@+130) sPSET +B
‘WINDOMW

70 LINE (130,130)-(149,185) sPSET +B
‘DOOR

75 PSET (134:157,1) 'DOOR KNOB

8@ LINE (16@:,105)-(160,90) +PSET ‘CHIMNEY

212

85 LINE -(175.:9@) +PSET ‘CHIMNEY

90 LINE -(175:115) +PSET ‘CHIMNEY

10@ ' SMOKE STARTS HERE

105 X=167:¥=89 ‘CIRCLE CENTERPDINT

110 SP=0: EP=0@ ‘CIRCLE START AND END
POINT

115 FOR R = 1 TO 5@ STEP ,@5 ‘CIRCLE RADIUS

120 EP=EP+.02: IF EP » 1 THEN EP = @

125 CIRCLE (X+R:s ¥Y-R) R s+44313+5F+EP ‘SMOKE

13@ NEXT R
200 GOTO 200

Do-It-Yourself Program 20-1

Delete Line 40 and add Line 65:
GBS PAINT (150:100) :8:8

Do-It-Yourself Program 20-3

5 PMODE 1.1

i@ PCLS

13 SCREEN 10

20 PCLS 3

25 COLOR 1.0

30 CIRCLE (200:3@) 15

35 PAINT (200 4+30) +241

49 LINE (109,185)-(18B0:125)PSET+B
45 LINE -(14@,90) +PSET

S50 LINE -(100,1253) +PSET

55 PAINT (135:1153) 441

6@ LINE (110,160)-(125+130) +PEET +B
65 LINE (155:16@)-(170,+130) »PSET B
70 PSET (134:153741)

75 PAINT (120,180) 041

B0 LINE (132,130)-(149,185) +PSET +B
85 LINE (121,135)-(41,185) yPEETB
9@ LINE (91,148)-(51.:1853) ,PEET 4B
95 PAINT (55:138) 0,1

10@ PAINT (89,183) 441

185 FOR X = 1 TO 50@: NEXT X

119 PAINT (88,183) 241

115 FOR X = 1 TD 5@@: NEXT X

120 PAINT (BO,1535) 141

149 GOTOD 110

Do-It-Yourself Program 21-1

3 PMODE 41
1® PCLS
2@ SCREEN 1:0

233

30 DRAMW "BMEB,11BiEZ@SBEZAIEZQIFZOIBF20)
FZoiL405BLAGSLADBULADSRABIBRAD 5
RAGGZD3BC2@G205H22iBHZO s HZ2@5BM128,965
NUL@SNDA@SNEZGSNFEZR INGEZE@SNHZO INLA@SRAD"

4e GOTO 40

The star you created probably isn’t as fancy as this one because you
haven’t been introduced to B or N yet. But don’t worry; you will be
before the end of the chapter.

Do-It-Yourself Program 21-2

5 PMODE 441

1@ PCLS

20 SCREEN 1.1

25 DRAMW "BMdD .805U405R4@D4@sL 4B
3¢ DRAW "BM+Z0.Z050d405R4eDde 040"
4¢ LINE (G@.100)-(49.:8@) +PSET

S0 LINE (B0 6@)-(40.:40) +PSET

6@ LINE (100.:6@)-(80.:40) sPSET

70 LINE (100.,100)-(80.:80) +P5ET

8@ GOTO BY

Do-It-Yourself Program 21-3

5 PMODE 4,1

1@ PCLS

20 SCREEN 1.1

23 DRAW "BME0 .50L30D30OR3ADIGL3D"

3@ DRAW "BMO® .S@DEOR3VUGE"

4@ DRAW "BM1G® »50DEOR3BBUGAL3BD3BRI0O"
530 GOTO 3@

Do-It-Yourself Program 21-4

S PMODE 4.1

i@ PCLS

20 SCREEN 1,0

30 DRAKW "BMO9B 9B iNUBD INESGINRBODINF3G5
NDB@ NG5G SNLB@ sNHSG6"

4@ CIRCLE (98:9B6) :8@ 141,125 41

30 CIRCLE (133+110) 48011 4+1,.,125

B@ LINE (135+110)-(190:167) +PSET

78 LINE (135,110)-(213,11@) +PSET

8@ GOTO 80

Do-It-Yourself Program 21-5

1 CLEAR 2500

S DIM AZ$(E5)

6 FOR LE = @ TO 25
1% READ AZ$(LE)
15 NEXE LE

214

20 NC$="BR4ABU7" 'NEXT CHARACTER
23 NL%="BD4" "NEXT LINE

30 BS$="BLO" "BACKSPACE

33 HM$="BM@ 10" ‘HOME POSITION

100
iie
120
128
200
210
225
230
250
269
262
263

269
270
290

CW=6: CH=8 'SIZE OF CELL
R1=7: RZ4=181 ‘ROW POSITION
Ci=8: C42=247 ‘COLUMN POS
CC=1: CL=1 ‘'CURRENT ROMW/COL
PMODE 4,1

PCLS

SCREEN 1,0

DRAW "S54

DRAKW HM®

Ae=INKEY®: IF A$=" " THEN Z5@
IF "A">*A% ORrR "Z2" < A% THEN 230
CC=CC+ 1

IF CC>27 THEN DRAMW NL%: FOR I =1 TO 27:
DRAW BS$: NEXT I:CC=1: GOTO 270
DRAK NC#%

DRAKW AZ$(ASC(A%) -B3)

GOTOD 25@

i1ge@ A
121® DATA BDIDBUANRSUZELIR3F1DE

1020
1030
1040
1050
1060
1870
ig8@
1090
1100
1110

Dgiﬂ ND7RAFIDIGINLAFIDZGINLABRI
D;?ﬁ BDIDSFIR3EIUIBUBUIHIL3GIBDGEBRS
Dﬁgﬁ D7R4EIUSHILABD7BRS

Dﬁiﬁ MR3D3INRADARS

Dﬁiﬁ NRSD3NRADABRS

1120 * G

1130 DATA BDIDSFIR3EIUZNLZBUZUIHIL3G1BDGBRS
ii1d4@d * H

1150 DATA D7U4RSNU3DA

1160 " 1

1170 DATA RALZD7LZR4BR1

1180 * J

1192 DATA BDSDIF1IR3ELUGBD?Y

12ee K

1210

DATA D7U4R3EZNULIGZFZDZ

1220 ' L

1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1333
1340
1350

DATA D7RS
M

DATA ND7RZND7RZD7BR1

‘N

DATA DINDGEIR3F1DG

‘0

DATA BD1DSF1R3E1USH1L3G1BDEBRS
' P

DATA ND7R4F1DZG1L4BD3BRS

© 0

DATA BD1DSFIR3E1USHIL3G1DABR3FZ
‘R

DATA ND7R4F1D1GINLAF1D3

215

216

1360 © 8§

137@ DATA BDIDIFIR3FIDZG1IL3HIBUSELIR3F1BDG
1380 * T

139@ DATA R4LZD7BR3

1400 * U

141¢ DATA DBF1IR3EL1UGBD7Y

14z * Y

1430 DATA DBFZE2USBD7BR1
1449 W

1450 DATA D7RENUBREU7BD7BR1
1460 © X

147@ DATA DIFSDIBLSUIESULIBD?
148 ' Y

149@ DATA DEZFZND3EZUZBD7BR1
1500 * 2

1510 DATA RSDIGSDIRS

Do-It-Yourself Program 21-6

5 PMODE 341

10
15
20

23
30
39
4@
45
5@
53
6o
65
70
73
80
85
90
91
93
96

PCLS

SCREEN 1.0

DRAW "BM5@:170iUB@ING30IEBRIFBOINF30 S
DBOSLSASUT7OLEDD705LGD"

LINE (50:170)-(170:17@) +PSET

LINE (110:17@)-(1682+178) :PBET

FOR X = 1 TO 300: NEXT X

LINE (100,170)-(160,17@) +PRESET

LINE (120,180)-(1204+110) +PSET

LINE (160:180)-(125+118) :PSET

LINE (160:170)-(125+180) sPSET

LINE (120,180)-(120,110) ,PRESET

LINE (160:100)-(125,110) sPRESET

LINE (16@,170)-(125,18@) sPRESET

DRAW "BM11@,1703iBU7@3BREOIGEZSID7OSEZR"
CIRCLE (13@,+123) +10+4+14+.135:.9

DRAW "BM130,13035D15:D155G10ELIOULISL1IO"
LINE (120,145)-(1204+135) +PBET

FOR X = 1 TO B60: NEXT X

LINE (120:143)-(120@,135) sPRESET

FOR X = 1 TO 120 NEXT X

100 LINE (120,145)-(110,145) »PSET

121

FOR X = 1 TO 6@: NEXT X

185 LINE (120,1453)-(110,145) yPRESET
106 FOR X = 1 TO B@: NEXT X

11@ LINE (120,145)-(1204+1353) s»PSET
120 FOR X = 1 TO 120: NEXT X

121

CIRCLE (13@:123) 4101

122 DRAW "BM130,:130:C135D30:CG1OSEL1@sULIS5L10"
125 DRAW "BM11@,17@3iBU70Q3iBR5QIC1 3

GEZSID7Q5EZS3"

130 COLOR 441

135 LINE (120,180)-(120,11@) +PSET
149 LINE (160 ,+10@)-(125,110) +PSET
145 LINE (162 4,170)-(125,180) +PSET

150 LINE (120:180)-(120,118) sPRESET
155 LINE (16@,10@)-(125+110) +PRESET
160 LINE (160.,17@)-(125,18@) +PRESET
1685 LINE (110,17@)-(162:170) +PSET
170 FOR X = 1 T0O 5@@: NEXT X

175 GOTOD 20

Do-It-Yourself Program 22-1

5 PCLEAR 4

1@ PMODE 441

13 PCLS

20 SCREEN 11

23 DIM W(35:35)

30 X=10: Y=10

35 DRAW "BM10@ 103 S23 HIQIRISIFIAIRZOS F125
GleiLZP3iGIASLISIELIOSUZODYINLBIDASNLLIZS
DANL1GS DAsNL1IZsD4sNLB"

4@ GET (HK-H:¥-Y)-(X#3,5:¥*¥3.,5) UG

45 A$=INKEY$: IF A%=" " THEN 45 'PRESS ANY
KEY TO START
50 PCLS

@

55 FOR A = 10 TO 200 STEP 5

BO PUT (X+AY)-(X+A+353Y+33) »VPBET
BES NEXT A

70 PCLS

75 GOTO 55

Notice that we’'ve used the options for both GET and PUT. If you want
this rocket to go faster, delete the options and switch to Mode 3.

Do-It-Yourself Program 24-1

3 CLS

18 FOR N =12 TO 1 STEP -1
15 PRINT "NOTE" 5 N

20 PLAY STR$(N)

25 FOR I=1TD 500 NEXT I
30 NEXT N

Do-It-Yourself Program 24-2

Change the following lines:

100 A% = "TSICIESFSLISGIPASLASCIESFsLL: G

185 B% = "P43L43CIiESFsL2yGsESCSEsSLL D"

112 C$ = "P43iL43iD+5LBIESGIEIPBIL4iCILBs: D3
D+II

115 D$ = "L435ESCsSL23503:CsLB30335Ds5LBI0Z: B-"

120 E$ = "GIESL4IGIL1sFiP4dsSLBIGSFSESF"

125 F$¢ = "L23GSESLASCIiLBIDD+SESGiLA3AS
L1035 C"

130 K% = "XKA$ 1B I XCHIHDEIHXES iXFH "

Add Line 140:

140 PLAY X%

217

Do-It-Yourself Program 25-1

3 CLS: PRINT "POSITION TAPE - PRESS PLAY
AND RECORD"

7 INPUT "PRESS <ENTER» WHEN READY" 3§ R%

i@ OPEN "O" s #-1, "CHECKS"

15 CLS: PRINT "INPUT CHECKS - PRESE <KX
WHEN FINISHED"

20 INPUT "NUMBER "3 N%

25 IF N$ = "HHX" THEN 9@

38 INPUT "DATE :"3 D%

4@ INPUT "PAYABLE TO :"35 P%

5@ INPUT "ACCOUNT :"35 S%

6@ INPUT "AMOUNT :%"3 A

7@ PRINT #-1, N, D% P%: 5% A

8© GOTO 15

9¢ CLOSE #-1

92 CLS5: T =@

95 INPUT "WHICH ACCOUNT" 5 B%

100 PRINT "REWIND TAPE - PRESS PLAY"

11¢ INPUT "PRESS <ENTER* WHEN READY" 3 R%

12¢ OPEN "I" s #-1, "CHECKS"

130 IF EOF(-1) THEN 17@

14@ INPUT #-1, N$, DE: PE+ S% A

15@ IF B% = 8% THEN T =T + A

16@ GOTO 130

179 CLOSE #-1

18@ PRINT "TOTAL SPENT ON -" B$, "I5 " T

Do-It-Yourself Program 26-1

1@ DATA 33 12, 42 13+ 15 23
20 DATA 25y 30y 33y 27 144+ B
30 DIM I(12)

4¢ FOR X =1 TO 12
53¢ READ I(X)
6@ NEXT X

7¢ INPUT "ITEM NO."3§ N

73 IF N * 12 THEN 7@

B@d PRINT "INVENTORY FOR ITEM" N "IS" I(N)
9@ CGOTO 70

Do-It-Yourself Program 26-2

5 DIM T(SZ)

7 DIMD(32)

18 FOR X =1 TO B2

20 T(X) = X

30 NEXT X

34 CLS

36 PRINT @ 101+ "... DEALING THE CARDS"
4@ FOR X =1 TOD 32

38 C = RND(S52)

G@ IF T(C) = @ THEN 5@

218

78 D(X) =C

7% SO0OUND 128, 1

8@ T(C) =0

10@ NEXT X

ii@ CLS

12@¢ PRINT @ 1@7 "YOUR HAND"
13@ PRINT B 167, " "

ide FOR X =1 T0 5

15@ PRINT D(X)3

180 NEXT ¥

Do-It-Yourself Program 27-1

Lines that change items:

11@ INPUT "WHICH ITEM NO. DO YOU WANT TO
CHANGE" 3 N

113 IF N > 12 THEN 110

1Z@ INPUT "WHAT IS5 THE REPLACEMENT ITEH"'
S%(N)

13¢ GOTO 89

The appendix has a sample program that adds and deletes items from
this list.

Do-It Yourself Program 27-2

Lines that change the song lyrics:

11¢ PRINT
12@¢ INPUT "WHICH LINE DO YOU WANT TO
REVISE" S L

125 IF L » 4 THEN 120

13®@ PRINT "TYPE THE REPLACEMENT LINE"
i4@ INPUT A$(L)

15¢ CGOTO 50

Do-It-Yourself Program 27-3

1 CLEAR 1002

S DIM A%(3@)

7 ELE

10 PRINT "TYPE A PARAGRAPH"

16

20 PRINT "PRESS </» WHEN FINISHED"

30 X =1

40 A¢ = INKEY%

30 IF A% = "" THEN 40

6@ PRINT A%3

7@ IF A% /" THEN 1@3

80 As(X) A% (X)) + A%

99 IF A% """ OR A% = "?" OR A% = "I" THEN X
=X+ 1

ig@ GOTOD 4@

219

185 PRINT: PRINT

11@ INPUT "(1) PRINT OR (2Z) REVISE": R

120 CLS

13¢ ON R GOSUB 1000, 2000

149 GOTO 123

1000 REM PRINT PARAGRAPH

1218 FOR ¥ = 1 TO X-1

1020 PRINT A$(Y) 3

1030 NEXT Y

1943 RETURN

2000 REM REVISE PARAGRAPH

2019 FOR Y = 1 TO ¥-1

ZPZ0 PRINT Y "--" A%(Y)

2030 NEXT ¥

2040 INPUT "SENTENCE NUMBER TO REVISE"§ 8§

2045 IF 8 *» ¥-1 OR § < 1 THEN Z@4@

20530 PRINT A%(S)

2060 PRINT "TYPE PHRASE TO DELETE"

2070 INPUT D%

2080 L = LEN(D%$)

2090 PRINT "TYPE A REPLACEMENT PHRASE"

2100 INPUT R%

2110 FOR £ = 1 TO LEN(A%(S))

2120 IF MID$(A$(S) +Z2+L) = D& THEN 2160

2130 NEXT Z

2140 PRINT D% "-- IS NOT IN YOUR SENTENCE"

2150 GOTO 2060

2160 E = Z - 1 + LEN(D%$)

2170 A%$(5) = LEFT$(A%$(S5)+2-1) + R$ + RIGHT
$(A$(S) s LEN(AS(S)) -E)

2180 RETURN

Do-It-Yourself Program 27-4

Change this line to print on the printer:
150 PRINT #-2, A$(Y) 3

Do-It-Yourself Program 28-1

1 CLS: CLEAR 10@@: DIM T$(100) » AS(100)
S$(100)» M$C100)» Z2(100)
PRINT "POSITION TAPE -- PRESS PLAY AND

ra

RECORD"
4 INPUT "PRESS <ENTER* WHEN READY":i R%$
8 REM
9 REM OUTPUT TO TAPE
1% OPEN "O" s #-1, "BODKS"
15 CLS: PRINT "INPUT YOUR BOOKS -- TYPE <XX>

WHEN FINISHED"
20 INPUT "TITLE"S T%
25 IF T4 = "XKX" THEN 30

26 INPUT "AUTHOR" 3 A%

220

28 INPUT "SUBJECT"3 S%
30 PRINT #-1, T$, A%+ 5%

49 GOTO 15
5@ CLOSE #-1
B9 CLS: PRINT "REWIND THE RECORDER AND PRESS

PLAY"
7@ INPUT "PRESS <ENTER» WHEN READY"3 R%$
74 REM
76 REM INPUT FROM TAPE
78 B =1

B® OPEN "I", #-1, "BOOKS"

BS IF EOF(-1) THEN 1Z0

99 INPUT #-1, T%(B), A%$(3)» 5%(B)

95 B =B + 1

11@ GOTO 83

120 CLOSE #-1

49@ PRINT :

5@ INPUT "SORT BY (1) TITLE (2) AUTHOR OR
(3) SUBJECT"3 A

510 IF A > 3 0R A < 1 THEN 500

52@¢ ON A GOSUB 1000, 2000, 3000

539 GOSUB 4000

S4@ PRINT

559 FOR X =1 70 B-1

S6@ PRINT "TITLE =" T&(Z(X))

578 PRINT "AUTHOR: " A®(Z(X))

58@ PRINT "SUBJECT :" S&(Z(X))

590 NEXT X

G@® PRINT : GOTO S00

B0® REM

8900 REM BUILD M$ ARRAY
199® FOR X = 1 TO B-1

1010 M$(X) = TH(X

192@ NEXT X

183® RETURN

200@ FOR X =1 TO B-1
201@ M$(XK) = A (X)
202@ NEXT X
203@ RETURN
3000 FOR X =
3010 M$(X) =
3020 NEXT X
3030 RETURN
3900 REM
4000 REM SORT ROUTINE
4003 T
49010 X
4@20 X + 1

4930 IF X » B-1 THEN RETURN
449 IF M$(X) = "ZZ" THEN 4@0Z0
485@ FOR ¥ = 1 TO B-1

4069 IF M$(Y) < M$(X) THEN X =Y
40638 Z(T) = X

4480 NEXT Y

485 T = T + 1

4999 M$(¥) = "ZZ°

41090 GOTO 4010

1 70 B-1
8¢ ()

nounon

P

221

Do-It-Yourself Program 29-1

1@ DIM S$(4) s N$(13) s T(4,13)

2@ DATA SPADESs HEARTS s DIAMONDS » CLUBS

3@ FOR X =1 70 4

4@ READ S% (X))

50 NEXT X

G@ DATA ACEs 2+ 3+ 4 34+ B+ 7+ By 8y 10
JACK » QUEEN s KING

7@ FOR X =1 TOD 13

8@ READ N%(X)

98 NEXT X

182 FOR S =1 TO 4

119 FOR N =1 TO 13

120 T(5sN) = (5-1) % 13 + N
13® NEXT NS

149 FOR X = 1 TO 32

150 S = RND(4): N = RND(13)
160 IF T(S:N) = @ THEN 130
1780 T(S5sN) = @

180 PRINT N#$(N) "-" S%(5),

190 NEXT ¥

Do-It-Yourself Program 30-1

= CLS

1 FOR NUMBER = 1 TO 1@
2@ PRINT NUMBER ~ Z

3@ NEXT NUMBER

Do-It-Yourself Program 30-2

3 CLS

1¢ FOR NUMBER = 100 TO 1 STEP -10
20 PRINT SQR(NUMBER)

30 NEXT NUMBER

Do-It-Yourself Program 30-3

S CLS

10 FOR A = -18@ TO 179 STEP 1@

153 RD=A/37.285377951

30 CP=COS(RD)*14+16.5 ‘COS POSITION
49 SP=SIN(RD)*14+168.5 ‘SIN POSITION
50 IF SP<=CP THEN 70

6@ PRINT TAB(CP): "C"3iTAB(SP)3i"S5": GOTO 8@
70 PRINT TAB(SP)sS"S"3iTAB(CP)s"C"

8@ NEXT A

9@ GOTO 12

222

Do-It-Yourself Program 30-4

a.) 7LOG (18@3)
6.91075079

b.) 7PLOG(74.,9865)
4,3173@81

c.) ? LOG(3.354285)
1.21023863

Do-It-Yourself Program 30-5

3 CLS

1@ INPUT "WHAT NUMBER "3i NUMBER

15 X=LOG(MUMBER)/LOG(1@)

20 PRINT "THE LOG BASE 1@ OF" NUMBER "IS" X
23 GOTO 10

a.,) 7.008390077 E -11

Note: The log of 1 in any base is 0. The answer the com-
puter displays is the result of a round-off error. All computers
produce this answer.

2.69897001
-1
f+) 3.00043408

Do-It-Yourself Program 30-6

1,) DEFFNR(¥) = X%#57,29577951
o)

5 CLS

10 DEF FNC () = X 4 3

20 INPUT "WHAT NUMBER DO YOU WANT TO CUBE" i X
30 ¥=FNC (})

49 PRINT ¥

S0 FOR A = 1 TO 75

55 NEXT A

G0 GOTO 20

Do-It-Yourself Program 31-1

5 CLS
16 X% = STRINGS$(3@,"-")

20 FOR X = 64 TO 416 STEP &4
30 PRINT @ X+ X%

4@ PRINT @ 97, "BILL"

41 PRINT @ 161, "SUE"

42 PRINT @ 225+ "JON"

43 PRINT @ 289 "MARY"

50 PRINT @ 38, "MATH"

51 PRINT @ 45, "SPELL"

223

5Z PRINT @ 33, "READ"
B@ PRINT @ 123, "X"
B1 PRINT @ 175, "K"
B2 PRINT @ 231, "K"
B3 PRINT @ 311, "X"
7@ NEXT X

B@® GOTO 80

Do-It-Yourself Program 31-2

S CLS
10 X$ = "ABCDEB"
20 Y$ = "B"

30 PRINT INSTR(X$¥$)35 INSTR(4,XE,Y$)

Do-It-Yourself Program 31-3

13 X =1

20 X$ = "JAMES SMITH,G55@HARISON :DALLASTH*
750@Z2:SUE SIMyRT3GRAVIDSMO*G5084: LYDIA
LONG s34455MITHST »ASBURYNJ*32024:BOB
STRONGBOX GO ,EDMONTONALBERTACA:TIMMY
DUNTON» PIERMONTMO*GS@78"

S0 P = INSTR(X:¥X$:+A%): PRINT P

B@ IF P < » @ THEN X = P+1: GOTO 5@

Do-It-Yourself Program 31-4

10 DIM TBL$(2B)
20 FOR I=0 TO 25

30 READ TBL$(I):NEXT I

49 PRINT "ENTER OLD-STYLE PHONE NUMBER"
50 INPUT N$

G@ IF N$=" " THEN 40

70 FOR I=1 TO LEN(N$)

B0 C$=MID$(N$,I,s1)

90 IF C$<"A" OR C$ »"Z" THEN 120
100 C$=TB$(ASC(C$)-65)

110 MID$(N$ 1) -C$

120 NEXT I

130 PRINT "NEW-STYLE = "§ N$

140 REM ABCDEF

150 Dﬁ—rﬁ Ilzll’IIEII’IIZII’IISII’IIBII’IIBII
160 REM GH I JK L

17@ DﬁTﬁ !F“I[,llall’llallPIISII,IISII’IISII
180 REMM N O P QR

190 DQTA "G"’IIBII’IIEII’H7II’I!Q1!’II‘7II
200 REM S T UV W X

:_31@ DQTQ 1!7"’IIBII’IIBII’IIBII’FISII’IESN
220 REM Y Z

230 DATA "g","z"

224

Do-It-Yourself Program 32-1

10 A% = "$shus #uuuus, 83 DOLLARS"

Do-It-Yourself Program 32-2

5 CLS

1@ INFUT "INCOME": I

15 INPUT "EXPENSBES"E

20 N = I-E ‘NET GAIN OR LOSS

25 A% = "$suuus, gu"

d0 B = "$duuse, wa”

35 C% = "+$duaus, aa"

49 CLS: PRINT @ 33 "MONTHLY ECONDMIC STATUS
REPORT"

45 PRINT B 96 STRINGS (32:"-")

5@ PRINT @ 1G@s "INCOME"

S5 PRINT B 256+ "EXPENSES"

G@ PRINT @ 352, "TOTAL (+) OR (=-)"

GS PRINT B 340 STRINGHF(1D,"-")

7@ PRINT B 1B@, USING A%7 1

75 PRINT B 276+ USING B%$3 E

8@ PRINT @ 371 USING C%3 N

9@ GOTO 9@

Try modifying this program to keep track of your electricity bills and to
store the information on a yearly basis.

Do-It-Yourself Program 32-3

o CLS

19 PRINT "THIS" TAB(POS(@)+4)"IE";

20 PRINT TAB(POS(Q)+4)"EVENLY"
TAB(PDOS(@)+4) "SPACED"

225

SAMPLE PROGRAMS

Sample Program #1

Type this program and save it on cassette, but don’t open it (or run it)
until Christmas!

5 CLS

10 PRINT B B4, STRING$ (32.,"%")

15 PRINT @ 352, STRINGS (3Z2,:"%")

20 PRINT @ 1889, "JOY TO THE WORLD"

23 FOR X = 1 TO 1000: NEXT X

3¢ CLS

35 PRINT @ G4, "JOY TO THE WORLD"

40 PRINT @ 96+ "THE LORD IS COME"

4% PRINT @ 128+ "LET EARTH RECEIVE HER KING"
5@% PRINT B 160, "LET EVERY HEART"

33 PRINT @ 192, "PREPARE HIM ROOM™

6@ PRINT @ 224, "AND HEAVEN AND NATURE SING"
B5 PRINT @ 256+ "AND HEAVEN AND NATURE SING"
70 PRINT @ 288, "AND HEAVEN AND HEAVEN AND

NATURE SING"

1900 A$="T45 037 LESCiL4i0Z25BSLBIAILEZ, sGiL4S
FIiLZSESDs"

105 B="LZ,35CiP32iL4iGiL2Z5AILAIP3Z25ALZ, B3
P32iL43iBs03iL1.C"

119 C$="L43iC3iC3i023iL45BiAIGILA, iGiLBIFILASES
03ic"

115 D$="033iL43iCi02iBIASGIP323iL4. 5GiLBIF3L4ds
EiP32iEIP3Z2IEIP3ZIEIP32ZIEIP3EZILBIEF"

120 E$="L2,3GiLBIFIEILADIP32iDIP323iDFP325
LB8SDIESLZ. 5FiLBIESD"

125 F$="02:3L43C3035L25C3025L45A5L4,3iGiLBIF S
L45 EsFsL25EsDiLLsC"

130 X$ = "XA$ KBS iXKCHIXDEIXESiKFS"

135 PLAY X%

200 PMODE 3.1

205 PCLS 4

21® SCREEN 1@

215 COLOR 1.4

220 LINE (90:96)-(1184+26) +PSET

225 LINE (14B6:9B6)-(118:26) +PSET

230 LINE (90,96)-(146,96) sPSET

235 DRAW "BM112,965D153R1Q5U1S"

240 LINE (2+112)-(255,896) +PSET

245 PAINT (238,85) 411

2530 X = RND(Z55)
255 Y = RND(1153)
260 A = RND(4)

265 PSET (XY ,A): GOTO 250

Sample Program #?2

1 ‘#%% BACK TO BACH ***
2 I

226

5 CLS

1@ PRINT @ 96+ STRING$(3Z:"%")

20 PRINT @ 320 STRING$(32,"%")

25 PRINT @ 201+ "BACK TO BACH"

49 FOR X = 1 TO 1008: NEXT X

55 A% = "TGI0DESLEZSCGIL4SCIDIEIFSLZ3GICIiP1GS
E:ii

B@ Be="LZiASL4SFiGiABI035L23C3023CiP1GICH
FiL43GsFiESD"

65 Cé="LZIEILAIFIEIDICILZ01iBs023L43C3iDs
EsC"

70 De="LESESLIIDILEIGIL4SCIDIESFILEZIG3CS
PlgsC"

75 E$="LZiAILAIFIGIAIBIO3IL2ICI0Z3CIPLIBICS
FiL4diGiFSESD"

B@ Fe="LESEIL4SFIEIDICIDIEILZ2iF3i013B3sL13i025

EII
B3 He="NA$iXBs I KCHiXDSIXESIXFS3"
90 PLAY X%

Sample Program #3

1 7 *%#*MEXICAN HAT DANCE#**%

Lo

F

2 CLS

19 PRINT B 9B sSTRING$(32,"%")

20 PRINT @ 320 ,:5TRINGS(3Z,"*")

30 PRINT @ 199,"MEXICAN HAT DANCE"

49 FOR X = 1 TO 500: NEXT X

125 REM S TARTTUNE

1390 D&="W153iT35023%"

135 P$="LBCFPBCFPBCFP4PB"

149 Q$="CFGFEP8BFGP4PB"

145 X$="XKO0EiXPEiXQ$ 5"

1530 PLAY X%

155 R$="CEPBCEPBCEPAPS

160 S$="CEFEDPBEFP4P8

165 Y$="HO$iKR$IHKGE"

17@ PLAY Y%

180 REM ZND TIME

185 O%= "Y253iT3501"

19@ PLAY X%

195 0%="T3:04"

197 S$="CEFEDPBEFO4CO3AF"

200 PLAY Y&

210 A%$="03C0ZBO3COZAA-AFEFCP4"

220 B$="CO1BOZCDEFGAB-0O3CEG"

225 0%="U1535T435"

230 Z¢="X04iXA%XBs"

235 PLAY 0%

240 C#="03B-AB-GF+FEG=ECEG"

245 Ds="04L1GCP1BCPIGCP1GLBDCO3B-AGFP4"

250 E$="X0%iXCeiXDHs"

233 PLAY F%

260 F$="0D2L1BCGP1BGPI1GGP1GDP1GDP1GDPIBEPLIGFP
1GLBELIBGP1IGOIGP1GLBG

227

265 G$="V1502L16GP1BGP1IBGP1IGDP1IGDP1IBDPIBEP
16FP1IGLBECOLIGC"

270 HeE="XF4$ iXGs:"

28@ PLAY H%

285 I$="XF&%3"

290 PLAY I%

295 J$="DZL1BGP1BGP1BGPIBAPIEGP1IEGP1IBAFP1BEF
1603L4CPB"

300 PLAY "XJ$3"

310 K$="D4LI1DLADEDELBDEDEL1GDEDEDEDEL
3ZDEDEDEDEDEDEDEDELGADEDEDE
DEDEDEDEDEDEDEDEDEL3ZDD-CO3BB-AA-
GF+FEE-DD-L4DD-"

320 PLAY "XK$i"

330 M%="TSLBDOZBB-BGF+GL4DPE"

340 Ns="L8DC+DEF+CGABO3COZL4ARB"

350 AA$="03LBCOZBOECOZAG+AF+FF+LADPEB"

370 BB$="03LE8DDDEDCOZBA03DEDCOZBA"

389 CC$="0ZDEDCO1BAD4DEDDEDDEDDEF+

- GDO3BGTA4DOZBGTIDOITZBLAPZVIOL1IG"

409 PLAY "HMiHN i KAAS i MBBs I NCCE"

50® PMODE 4.1

505 FOR Y = 1 TO S
51@ SCREEN 1.2
520 PCLS

S50 CIRCLE (128,:96) +5@+1+,2+.,85+.67
560 CIRCLE (128:896):25+14+24+.3+1

570 LINE (185,96)-(151,96) +PSET

@@ PMODE 441

619 SCREEN 1.9

G20 PCLS

30 CIRCLE (12B:73)+304+1+.2,:.85,.67
66® CIRCLE (128:753) 14244541

670 LINE (165,:75)-(151,75) +PBET

B75 NEXT Y

680 IF Y » 3 THEN G390

685 GOTO 5090

G990 CLS

709 PRINT @ 227 "NOW THAT'S A HOT TAMALE"
710 FOR X = 1 TO B@@:NEXT X

720 GOTO 3

Sample Program #4

1 ¢ ##*BUFFALO GALS**x

2 I

5 CLS

19 PRINT B B4+ STRING$(3Z,"%*")

15 PRINT @ 384 STRINGH(32,"%*")

20 PRINT @ 201, "BUFFALO GALS"

25 FOR X = 1 TO 100@: NEXT X: CLS

30 PRINT @ 32y "AS5 I WAS WALKING DOWN THE
STREET"

35 PRINT @ 64 "DOWN THE STREET: DOWN THE
STREET"

49 PRINT @ 96+ "A PRETTY GAL I HAPPENED"

228

43
S@
oo
6@
B3
70
73
=1
B3
9@
93
100
185
110

115
120
125
130
135
140
143

150
135

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

A$="TA3C3E;P325EIFP32iFIAIGIL2IES"

133
169
197
224
261
288+
320
332
391
416+
433

mEm@mMEmmEm @@ @@

"TO MEET"

"JUST AS LOVELY AS"

"THE MORNING DEW"
"BUFFALO GALS WON‘'T YOU"
"COME OUT TONIGHT"

"COME OUT TONIGHT +"
"COME OUT TONIGHT +"
"BUFFALD GALS WON'T YOU"
"COME OUT TONIGHT"

"AND DANCE IN THE"
"LIGHT OF THE MOON."

Bs="LASGiFiLZiDiL4d5AIGIEICH"

Ce="LASEIP3Z2IESFIP323FiLBIAIP3ZiAILLS

GIEFO335LBICIP3ZsCs"

D$="0Z3iBiP3Z2iBiGIP32iGIL4iFi013B30253

L1SCiPIBs"

E$="LBiCiP3ZiCiL43P3ZIiCIEILBIGIP3ZiGs

ASP323ATLAIGIL2E"

F$="LBiGiP3Z3iGiL4iFILZIDIL4IAILBIGS
P323iGiL2E"
Ge="LBICiPB4iCIiPBATLASCIEILBIGIP3EZ3G3

L45ASLBIGIP3ZiGIL4SESO3SCH"

H$="0Z23iBiLBiGIP3ZiGIFIP3ZiFiL43D3IL2, 3

C;II

K$ =

PLAY X%

CLS

PRINT @ 230

"HASIHBEINCHIHDS IXES IHFSIXGE T XHE "

"THAT 'S ALL FOLKS"

Sample Program #5

b

5 PMODE 3.1

10
13
20
23
30
a5
ae
a3
S0
35
B@
GBS
70
73
=1

1 “%%% IN-0UT #%#

PCLS3

SCREEN 19

FOR I = 3 T0O 7

FOR J = 2 TO B

FOrR 8 = ® TO 3

FOR R = @ TO 3

COLOR RS

A= @:B=250:C=0:D=191

LINE (A:C)-(B:D)+PSET:B
A=A+J:B=B-J:C=C+1:D=D-1

IF A<255 AND C<191 THEN 5@
NEXT R

NEXT S

NEXT J+1

GOTO 30

Sample Program #6

1 I
10
75

#%% DRAWING TRIANGLES *%*
CLS: CLEAR
PRINT BOBsSTRING$(32,"*")

229

230

8@ PRINT @ 288 STRING®(3Z,"*")

i@

e
P P e
L8| B

130

140
150
200
210

230
235

240
230
260
270
280
300
310

320
325
330
340
330
a0
419

430
a4@
450
a6o

a7e
490
S00
510
020

530
532
533
535
537
540

PRINT @ 16G@+ "THIS PROGRAM DRAWS THE
TRIANGLE YOU SPECIFY AND THEN CALCULATES
ITS AREA™

FOR X=1 TO ZZ@0: NEXT: CLS

CLS:PRINT"FOR 3 SIDES TY¥PEs 558 (@-100)"
PRINT"FOR 2 SIDES (1-1@@) AND 1 ANGLE (@-
@) TYPEs SAS"

PRINT "FOR 1 SIDE (@-G@) AND 2 ANGLES (0@-
@) TYPEs ABA"

INPUT A%: IF A%="5AS" GOTOD 3900

IF As="ASA" GOTOD 400

‘588

PRINT "ENTER 3 SIDESs (LONGEST SIDE
FIRST)"

INPUT L1sL24+L3

IF L2xL1 OR L3*L1 THEN PRINT "***LONGEST
FIRST PLEASE + + +": PRINT: GOTO 210
S=(L1+LZ2+L3)/2

IF S<=L1 THEN PRINT "*#*NOT A
TRIANGLE#*x": PRINT: GOTOD 210
Y3=Z%#50R(S*#(5-L2)*(5-L1)*(5-L3))/L1
A=Y3/L2: A=ATN(A/SQAR(-A*A+1))
K3=COS(A)*LZ

AR=(L1*Y3)/2

GOTO 499

‘SAS

PRINT "ENTER 2 SIDES AND 1 ANGLE: AB.AC:
THETA (LARGEST SIDE FIRST)"

INPUT L1sL2,T

T=(T*3.14139)/18@

Y3=LZ#*5IN(T)

K3=COS(T)*LEZ

AR=(L1*Y3)/2: GOTO 49@

"ASA

PRINT "ENTER 2 ANGLES AND 1 SIDE: THETA1:
THETAZ: AB"

INPUT T1,T2,4LZ

S TI=(T1#3.14159)/18@: T2=(T2*3,14139)/

189

W3=LEZ#8IN(T1)

B1=COS(T1)*L2

B2=Y3/TAN(TZ)

Li=B1+B2: X3=B1: IF LZ2>L1 THEN X=L1:
Li=L2: LEZ=X

AR=(LZ2%¥Y3) /2

CLS:PMODE4 +1:PCLS:SCREEN 11

F=1

WC=(3,14159 * (L1*#F-X3#F)*(Y3*F)"2)/3
WS=(3,14159 *(X3*F)*(Y¥3*F)"2)/3:
UT=UC+US

§1=¥3/X3: S2=Y3/(X3-L1)

IF INT(X3) = @ THEN 110@

IF INT(X3)=INT(L1) THEN 1000

IF X3xL1 THEN 11899

IF X3=L2 THEN 1000

FOR ¥Y=2@ TD L1*2+2® STEP Z:

PSET(Y +¥3+5:35) 1 NEXT
230 FOR X=0 TO X3
531 PSET(X#2+20,81% (X3-X)+53,:3): NEXT
SBO FOR X=X3 TO L1: PSET(X*#Z+Z0,¥Y3+(82% (L1~
H)+3)+3) 2 NEXT
o9B® FOR X=1 TO GO0z NEXT X
B1@ PRINT @ 130 ,"AREA="FARI" 50, UNITS"S
G630 PRINT @352, "#"§: INPUT "TO RUN AGAIN:
PRESS <1» <ENTER:>"3 BG: IF BGB=1 THEN 120
G649 STOP: GOTO 10
1200 FOR Y=3 TO Y3+45: PSET(X3*2+Z20 Y +4) 1
NEXT: GOTO 540
1100 FOR Y=5 TO Y3+45: PSET(20,Y3): NEXT:
GOTD 540
1200 FOR X=L1 TO X3: PSET(X#2+20,Y3+(82%(L1-
X)+3)3): NEXT: GOTO 340
1300 FOR X=X3 TO @: PSET(X#2+Z2Z0,Y3+(51%(0-
KI+3)+4): NEXT: GOTO 5490

Sample Program #7

1 “#%% PROJECTION STUDIES #*%*=*

2 !
5 PMODE 441
1@ PCLS

15 SCREEN 1.0

20 DRAW "BMS® ,SORGAD1IANLEZGDZOLZONUZALZONU
2OL20UZONRZAULIA" "TOP VIEW

25 DRAW"BMS® 1 00RZONDZORZONDZORZADZONLZAD
10LEQUI@NRZOQUEDG" "FRONT VIEMW

30 DRAW "BM150100R3OD3AL3QUIONEZQUZD"
‘SIDE VIEMW

35 ’/ OBLIQUE VIEW_LINES 40-G62

49 DRAW "BM150,50USELIDSRI1OBFZQBD3ONRSLZOH
25U10

45 DRAW"BM15@ »50USFBULISR1ISHBFBL1ISFBNRLISD
15FBNDIQEISNRIOHB

S0 LINE (175,3@0)-(2002,55) +PSET

55 LINE -(Z200:80) sPSET

6@ LINE (167 +6@0)-(183,46) sPSET

B3 GOTO GBS

Sample Program #38

1 “%*%% UNFOLDING BOX *%*%*

2 I

S PCLEAR B

i® PMODE 31

15 PCLS

20 COLOR B3

25 DRAW"BM1@0 » 10QU3ONR3PELISER3ONGISD30G16E
NU3@L3e"

3@ PAINT (1©5:95) :8:6

35 PAINT (135:80) 846

231

49 PAINT (11@:65) +8:6
45 SCREEN 1 41

80 FOR X = 1 TO G@0: NEXT X
11® PMODE 3.3
112 PELS

115 COLOR 6.5

120 DRAKW "BM1i@@,100U3GNRIVEZORIOGZAD3IANL
3OFZOL30HZQ

125 LINE (120 ,:100)-(70,93) +PSET

138 LINE -(70:B65) +PSET

135 LINE -(10@,70) +PSET

149 LINE (7@0:+95)-(40:65) +PSET +B

145 LINE (130,100)-(16@,93) sPSET

150 LINE -(160:63) »PSET

155 LINE -(130:70) +PSET

160 PAINT (95:95) 846

165 PAINT (1©5:93) 8.6

170 PAINT (135.:85) 8.6

175 PAINT (45:85) .86

18@ PAINT (115:65) 8.6

185 PAINT (125,114) 8,6

190 SCREEN 141

195 FOR X = 1 TD G@@: NEXT X

200 GOTO 10

Sample Program #9

1 '#%% SINE WAVE *%%*

bl i

5 PMODE 441

1@ PCLS

15 SCREEN 11

20 LINE (®+8BB6)-(255,86) sPSET
25 PI=3.14158

30 Al=-4%PI

35 AZ=4x%PI

49 N=180

43 R=350

5@ X=(AZ-A1)/N

55 F=2858/(AZ-A1)

G@ FOR I =A1 TO AZ STEP X
BS H=I*F

70 Y=R*8IN(I)

75 PSET ((X+140) ,(8@+Y) +1)
8@ NEXT I

8¢ GOTO 90

Sample Program #10

1 “%#%% GIN/COS **#*
2 i

1@ PMODE 4.1

20 PCLS

232

30 SCREEN 1.0

49 LINE (127,5)-(127+185) »PSET
S0 LINE (7:95)-(247,95) »PSET
B® FOR XSCALE=7 TO 247 STEP 20
78 PRESET (XSCALE +8953)

B® NEXT MSCALE

99 FOR YSCALE=5 TO 183 STEP 1@
100 PRESET(127,YSCALE)

113 NEXT YSCALE

130 FOR X=-18@ TO 18@ STEP 1.5
149 AX=X/57.29578

145 XKP=X/1.,5+127

150 F1=-{(SIN(AX)*90)+93

160 F2=-(CO5(AX)*80)+85

170 PSET(XP:F1:1): PEBET(XPsFZs1)
18@ NEXT X

199 GOTO 19¢

Sample Program #11

1

10
15
20
25

3@
35
ae
S0
35
6@
B3

‘#%% RANDOM GRAPHICS **%

PMODE 3+1

PCLS

SCREEN 11

F =RND(4):B=RND(8): IF B=F OR (B-4=F)
THEN 23

COLOR FyB:PCLS B: FOR L = @ TD 5
LINE -(RND(Z55) RND(181)) +PBET
CIRCLE (RND(Z255):RND(1891))RND(10@2)
NEXT: FOR P=0 TO 10

PAINT (RND(255) yRND{(191)) RND (4)F
NEXT: FOR H = 1 TO 7

FOR T=0@ TO 6@@: NEXT T: GOTO 1@

Sample Program #12

‘x%¥NAVAHD BLANKET * %%
PMODE 3.1

PCLS 4

SCREEN 1.0

COLOR 1+0

FOR ¥ = @ TO 255 STEP 18

oY = Y

Y = 3@-0Y

LINE (X+100-Y)-(X%+10,:100-0Y) +PSET
LINE(K120+Y)-(X+1@:120+0Y) +PSET
NEXT

FOrR C = 2 TD B

PAINT (0:+110) +C 1

NEXT

GOTO S5

233

Sample Program #13

1 “%*%% PAINTED LACE **#

2 /
5 PMODE 31
1@ PCLS

20 SCREEN 1 :1

30 DRAW"BMS5Q +180UBRBUZOUGPRGEBREZORGEODER
BDZODGALGOABLZOLGO

49 DRAW"BMS2 ,1B80UGBPRA4PBRZORBADZABLEZOLGAD
BLZOLZ@DZ2ORZOBREORZOUZD

50 DRAW"BM50,1B80REOUBABUZOQU4@L4OBDZOD2D
BDGODZeRZOUBOBUZOUZOLZQ

G@ DRAW"BMS2 +1B80UBRBU4PBREZORGOBREARZAUZR
LZODGOBDZODZORZD

70 DRAW"BMS® »180BRBOU4RBUZOUBD

8@ DRAW"BMS® +180BUBORBUBRZORAD

9@ PAINT (85,128)+6,8

93 PAINT (95:78):6:8

97 PAINT (1535:95) 6.8

98 PAINT (135:145),6+8

99 PAINT (128:185):7.:8

12@ PAINT (75:150) 7.8

101 PAINT (160:15@) +7 48

102 PAINT (75:75) +7+8

183 PAINT (1G6@:73) +7:8

104 PAINT (120:11@) 7,48

110 FOR X =1 TO B@0@: NEXT X

209 GOTO 3

Sample Program #14

1 ‘#%% DRAWING BOARD **%

o 7

3 CLS

5 PRINT B12B8,STRING$(32,"%"):PRINTE 288,

STRING$(32,"%")

12 PRINT @ Z@@®,» "DRAWING BOARD"

15 FOR X = 1 TO B@@: NEXT X

2@ CLS

25 PRINT @ 96: "PRESS <f} FOR UPs+ <DOMWN
ARROW: FOR DOWN: <BACKSPACE: FOR LEFT:
{TAB» FOR RIGHT s <A> FOR SOUTHMWEST s <87
FOR SOUTHEAST s <W» FOR NORTHEAST: <@ FOR
NORTHWEST"

30 PRINT @ 288,"PRESS <1 FOR INVISIBLE
LINEs «2%+43>s OR <4> FOR DIFFERENT
COLORED VISIBLE LINESs PRESS «/> TO
CHANGE COLOR-SET™

35 PRINT @ 448, "PRESS <SPACEBAR: TO PAUSE"

49 FOR X=1 TO 4800: NEXT X

45 CC=4: TG=0

590 PMODE 31

35 PCLS

234

E@ SCREEN 1:TG

70 K=128:YV=8B:XI=0:Y1=0

B@ Uk=""": D$=CHR®(1@): W$=CHR$(B):
E€=CHR%$(9)

92 NW$="0Q": NE$="W": SWE="A": SEE="5"

1900 Ci$="1":C24="2":C3%="3": Cds="4"

110 As=INKEY%

120 IF A$=U% THEN YI=-1:XI=0: GOTO 240

130 IF A$=D% THEN YI=1:XI=0: GOTO 240

140 IF A$=W$ THEN XI=-1:¥I=0: GOTO 240

150 IF A%$=E$ THEN XI=1:YI=0: GOTO 240

16@ IF A$=NE%$ THEN XI=1:¥I=-1: GOTO 240

170 IF As=NW$® THEN XI=-1:¥I=-1:G0TO 240

180 IF A$=SE$ THEN XI=1:¥I1=1:G0T0 24@

190 IF A$=SW$ THEN XI=-1:%¥I1=1:G0T0 240

200 IF Cl1$<=A% AND A%$<=Cd% THEN CC=ASC(A%) -
48: GOTO 240

219 IF A%="/" THEN TG=(NOT TG AND 1) OR (TG
AND NOT 1): GOTO 240

220 SCREEN 14 TG

230 IF A%=" " THEN XI=0: YI=0

240 K=X+KI:¥=Y+YI:IF X<@ THEN X=0

250 IF K*255 THEN X=2535

260 IF Y<@® THEN Y=0

27® IF ¥>191 THEN ¥ =191

275 IF CC=1 THEN PSET(X Y +3)

280 PSET (XY :CC)

290 GOTOD 110

Sample Program #15

1 “#%% INTERACTING LINES **=*
2 !

3 CLS

26 C=C+ 1

23 IFC »8 THENC = 5

30 COLOR C»s1

50 PRINT "TYPE X@:¥Y@"3

B@ INPUT X@:Y0

7@ PRINT "TYPE K1,¥1"3

B@ INPUT X1:¥1

99 PMODE 3.1

95 PCLS

10@ SCREEN 11

110 LINE (X@,¥Y@3)-(X1,Y1)PEET
115 FOR X = 1 TD 200@: NEXT X
120 GOTO 2@

Sample Program #16

1 “#%% RANDOM LINES ***
2 s

20 PMODE 4:+1

25 PCLS

235

3@ SCREEN 11

33 X = RND(253): ¥ = RNDC191)
49 LINE - (X s¥) +PSET

43 FOR X = 1 TD 200: NEXT X
5@ GOTO 35

Sample Program #17

1 "%*%% B-LEAF CLOVER ##%
2 ’

3 PCLEAR B

10 PMODE 4,1

15 PCLS

20 SCREEN 1,0

23 PI=3.,1415389

30 Al=0: AZ=2%PI

35 N=360:A=50

49 X = (AZ-A1)/N

45 FOR I = A1 TO AZ STEP X
SO R = A % COS (4%1)

59 K =R #*SIN(I)

G@ ¥ =R % COS(I)

B5 PSET(128B + X 896+Y +5)
7@ NEXT I

73 GOTO 25

Sample Program #18

1 ‘%%% TIMEBOMB #*#*

2 i

1@ PMODE 4, 1

153 PCLS

20 SCREEN 141

23 CIRCLE (1ZB,96) ,80

30 CIRCLE (12B.96) +90

35 'PAINT (@:0) +5

49 FOR T=3@ TO -3@ STEP -1

45 A=(2%3,1415)*T/G@

5@ LINE (128,9B6)-(75%5IN(A)Y+128,75%
COS(AY+8B) +:PSET

53 SOUND Q#2+1Z20/(Q+1)+1

6@ LINE (1284+9B8)-(75%5IN(A)+128,75%
COS(A)+9B) s PRESET

B5 W=60-2%T:FOR ¥Y=Q TO @ STEP -1:NEXT

7@ NEXT

79 CLS

80 PCLS

83 PRINT @ 237,"BOOMI"

99 SOUND 1 .30

95 PMODE 4.1

12¢ SCREEN 1,1

185 FOR I =2 TD 2@® STEP 2

110 CIRCLE (128,96) 41

115 NEXT I

236

120
125
130
135
140
143
150
155

SCREEN 141

FOR X =2 TO 200 STEP 2
CIRCLE (128,896) ¥ +.3
NEXT X

FOR I = 2 T0 200 STEP 2
CIRCLE (1Z284+8BY 1 +3.4.8
NEXT I

GOTO 135

Sample Program #19

1 “%#% ROTATING FAN *%x

r /
S

3 PCLEAR B
5@ GOTO GO

6@ LINE ((Z255-X)(1891-Y¥))-(XY)+PEET

61 J = J+1:IF JxA THEN J=0:A=RND(30)

B3 RETURN

6a@
621
622
603
64
B@S5
61@
612
B15
620
623
B25
630
B33
633
B4@
643
645
GS@
GBD
670
680
690
700
710

REM ROTATING FAN

FOR I =1 TO 5 STEP 4
PMODE 3+1

PCLS

SCREEN 1.0

A=Z25:K=0: Y=0: J=0
FOR ¥ =0 TO 254

COLOR X/32+143

GOSUB G@: NEXT X

FOR Y =@ TO 190

COLOR ¥/24+1 48

GOSUB B@: NEXT Y

FOR X = 255 TO 1 STEP -1
COLOR X/32+1.53

GOSUB B@: MEXT X

FOrR ¥ = 181 TO 1 STEP -1
COLOR Y¥/24+1,5

GOSUB B@: NEXT Y

NEXT I

FOR I =1 TO S STEP 4
PMODE 31

SCREEN 1,9

FOR T = 1 TO 3@: NEXT T
NEXT I

GOTO GG@

‘Sample Program #20

1 “*#*#WALKING TRIANGLES ***

10
15
20
30
4@
S0
53
ae

FOR A = 990 TO @ STEP -4
§1=A%9: §Z=191
A3=A/37.29378
Kl=0:Y¥1=191

K2=81+X1: YZ2=Y1

K3=X1+52%C0OS(A3):Y3=Y1-S2%5IN(A3)

GOsSuB 1200
NEXT A

237

238

99

GOTO 99

1200 PMODE 441
1@@5 PCLS

10
10
10
10
10

i@ SCREEN 140

20 LINE (H1.,¥1)-(X2¥Y2)+PSET
30 LINE -(X3:¥3) +PSET

49 LINE -(X1:%¥1) sPSET

6@ RETURN

Sample Program #21

1

10
20
30

a5
ae
S0
G0
70

=1
a0

‘#%% COUNTING *%x
CLS
CLEAR 1009

PRINT "WHERE DO YOU WANT TO START
COUNTING™?"

INPUT A%

P=LEN(A%)

PRINT:PRINT A%

C=VAL(MID$ (A% P +1))+1
MS$=A%: MR$=RIGHT$(STR$(C)1): PS=P:
GOSUB 200: A%$=MS$

IF C<10 THEN 40

P=P-1

109 IF P=0® THEN IF LEN(A%)=2535 THEN PRINT

11
20
21
22

"OVERFLOW": END: ELSE A$="1"+A4%: GOTO 40
@ GOTO Go
@ LS=LEN(ME%)
@ IF LS< > LEN(MR$)+L5-1 OR PS<1 THEN STOP
@ MS$=LEFT$(MS%+PS5-1)+MR$+RICHT% (MB5%:LE-
PS)

230 RETURN

Inventory Shopping List

5 CLEAR 2000: DIM S%(10@)

10
20
30
a0
S0
6@
70
ga
a9e

REM INVENTORY /SHOPPING LIST

CLS

PRINT @ 714 "DO YOU WANT TO--"

PRINT @ 134, "(1) INPUT ITEMS"

PRINT @ 166+ "(2) REPLACE ITEMS"
PRINT @ 198, "(3) ADD TO THE LIST"
PRINT @ 230, "(4) DELETE ITEMS"
PRINT @ 262+ "(5) PRINT ALL ITEMS®
PRINT @ 294, "(B) SAVE ITEMS ON TAPE"

1990 PRINT @ 326+ "(7) LOAD ITEMS FROM TAPE"
110 PRINT @ 395, "(1-7)"3

120 INPUT M

130 IF M < @ ORM > 7 THEN 10

149 ON M GOSUB 100@, 2000, 1020, 3000, 4000,

S000, GOOO
159 GOTO 10
92¢ REM
1000 REM INPUT/ADD ITEMS

1010
1020
1030

1040
1045
1050
1060
1070
1920
2000
2005
2010
2020

2030
2040
2050
2060
2900
3000
3005
3010
3020

3030
3035
304@
3050
3060
307@
3080
3090
3100
3900
4000
4010
4020
4030
4040
4030
4060
4e7e
4900
S000
S010
SQ20
S030
Sede
S050
S0Go
5070
o089
5090
S100
3900
OO0

\If = 1
CLS: PRINT @ 8+ "INPUT/ADD ITEMS"
PRINT @ 344 "PRESS <ENTER> WHEN

FINISHED"

PRINT: PRINT "ITEM" Y3
INPUT S$(Y)

IF 86(¥) = " " THEN RETURN
Yo=Y + 1

GOTO 1040

REM

REM REPLACE ITEMS

N =28

CLS: PRINT B 9 "REPLACE ITEMS"

PRINT B 34, "PRESSE <ENTER>» WHEN
FINISHED"

PRINT: INPUT "ITEM NO. TO REPLACE" 3 N
IF N = @ THEN RETURN

INPUT "REPLACEMENT ITEM" 3§ S&(N)

GOTO 2000

REM

REM DELETE ITEMS

N =20 -
CLS: PRINT B 9 "DELETE ITEMS"

PRINT @ 34, "PRESS <ENTER>» WHEN
FINISHED"

PRINT: INPUT "ITEM TO DELETE": N
IF N > ¥-1 THEN 3030

IF N = @ THEN RETURN

FOR X = N TD ¥-2

S (X) = Bh(X+1)

NEXT X

Ss(X) = "

Y o= ¥-1

GOTO 3000

REM

REM PRINT ITEMS

FOR X = 1 TO ¥Y-1 STEP 15

FOR Z2 = X TO X+14

PRINT 235 S%$(Z)

NEXT Z

INPUT "PRESS <ENTERZX TO CONTINUE"j C%
NEXT X

RETURN

REM

REM SAVE ITEMS ON TAPE

CLS: PRINT @ 135+ "SAVE ITEMS ON TAPE"

PRINT @ 234, "POSITION TAPE"

PRINT B 294+ "PRESS PLAY AND RECORD"
PRINT @ 388, "PRESS <“ENTER:> WHEN READY"
INPUT R%

OPEN "O" s #-1, "LIST"

FOR X = 1 70 Y-1

PRINT #-13 S$(X)

NEXT X

CLOSE #-1: RETURN

REM

REM LOAD ITEMS FROM TAPE

239

Speed Reading

12 REM SPEED READING
20 CLS: PRINT @ 32, "HOW MANY WORDS PER
MINUTE"

3@ INPUT "DO YOU READ" 35 WPM

49 FOR ¥ =1 TO 23

E® READ A% : PRINT @B 256 A%

7@ FOR ¥ = 1 TO (3B@/WPM) % 46@ : NEXT Y
B@ REM ¥ LOOP SETS LINES/MIN

9@ NEXT X : END

199 DATA SCARLETT OHARA WAS NOT BEAUTIFUL
11® DATA BUT MEN SELDOM REALIZED IT WHEN
120 DATA CAUGHT BY HER OWN CHARM AS THE
13% DATA TARLETON TWINS WERE. IN HER FACE
143 DATA WERE TOD SHARPLY BLENDED

150 DATA THE DELICATE FEATURES OF HER

16@ DATA "MOTHER s A COAST ARISTOCRAT OF"
179 DATA "FRENCH DESCENT + AND THE HEAUY"
1B® DATA ONES OF HER FLORID IRISH FATHER
19@ DATA "BUT IT WAS AN ARRESTING FACE »"
Z00 DATA "POINTED OF CHIN. SQUARE OF JAW"
219 DATA HER EYES WERE PALE GREEN

220 DATA "WITHOUT A TOUCH OF HAZEL +"

230 DATA STARRED WITH BRISTLY BLACK

240 DATA LASHES AND SLIGHTLY TILTED

25® DATA "THE ENDS: ABOVE THEM: HER THICK"
26@ DATA "BLACK BROWS SLANTED UPWARDS »"
270 DATA CUTTING A STARTLING ODBLIQUE LINE
289 DATA IN HER MAGNOLIA-WHITE SKIN--THAT
2899 DATA "SKIN 50 PRIZED BY SOUTHERM WOMEN"
30@ DATA AND S0 CAREFULLY GUARDED WITH
31@ DATA "BONNETSs» VEILS» AND MITTENS"
320 DATA AGAINST HOT GEORGIA SUNS

Memory Test

This program uses an array to test both yours and your computer’s
memaory:

3 DIMACT)

1% PRINT "MEMORIZE THESE NUMBERS"

15 PRINT "¥YOU HAVE 1@ SECONDS"

20 FOR X =1 T0O 7

30 A(K) = RND(10@)

4@ PRINT ACX)

SO NEXT X

G@ FOR X = 1 TO 460 % 1@ : NEXT ®

7@ CLS

80 FOR X = 1 TO 7

9@ PRINT "WHAT WAS NUMBER" X

1@® INPUT R

119 IF A(X) = R THEN PRINT "CORRECT" ELSE
PRINT "WRONG - IT WAS" A(X)

120 NEXT X

240

ASCIl Character Codes

These are the ASCII codes for each of the characters on your keyboard.
The first column is the character; the second is the code in decimal no-
tation; and the third converts the code to a hexadecimal (16-based

number).
CHARACTER DECIMAL HEXADECIMAL
CODE CODE

32 20
! o 21
" 34 22
35 23
$ 36 24
% 37 25
& 38 26
’ 39 27
(40 28
) 41 29
* 42 2A
- 43 2B
, 44 2C
- 45 2D
: 46 2E
/ 47 2F
0 48 30
1 49 31
2 50 32
3 51 33
4 52 34
5 53 35
6 54 36
7 55 37
8 56 38
9 57 39
! 58 3A
; 59 3B
< 60 3C
- 61 3D
= 62 3E
? 63 3F
@ 64 40
A 65 41
B 66 42
& 67 43
D 68 44
E 69 45
F 70 46
G 71 47
H 72 48
| 73 49
J 74 4A
K 75 4B
L 76 4C
M 77 4D
N 78 4E

241

242

CHARACTER DECIMAL HEXADECIMAL

CODE CODE

@) 79 4F

P 80 50

Q 81 51

R 82 52

S 83 53

T 84 54

U 85 55

\Y; 86 56

W 87 57

X 88 58

Y 89 59

Z 90 5A

a* 94 5E
D 10 OA
=) 8 08
)+ 9 09

(BREAK) 03 03
] 0C
13 oD

*If shifted, the codes for these characters are as follows: (CLEAR) is 92
(hex 5C); is 95 (hex 5F); (YD is 91 (hex 5B); is 21 (hex 15);
and is 93 (hex 5D).

Lowercase Codes

These are the ASCIl codes for lowercase letters. You can produce these
characters by pressing the and (0) keys simultaneously to get
into an upper- lowercase mode. The lowercase letters will appear on
your screen in reversed colors (green with a black background).

CHARACTER DECIMAL HEXADECIMAL
CODE CODE
a 97 61
b 98 62
C 99 63
d 100 64
e 101 65
f 102 66
g 103 67
h 104 68
i 105 69
j 106 6A
k 107 6B
[108 6C
m 109 6D
n 110 6E
0 111 6F
p 112 70
q 113 71

CHARACTER DECIMAL HEXADECIMAL

CODE CODE
r 114 72
S 115 73
t 116 74
u 117 75
% 118 76
w 119 77
X 120 78
y 12 79
z 122 7A

243

GRAPHICS SCREEN WORKSHEET (128 x 192)

ovE

43

]
]

]
=

2

&

iEfEgumeesa

~
w

& 2 2 4% 8 & 2 8 K8 8 BEB

-

-0

244

e

)

L

am

o

o

e

Mo

-

LT

P

"

am-

e

-

L.

mme

-

man

GRAPHICS SCREEN WORKSHEET (256 x 192)

4 8 12 16 2 M M 32 36 40 44 48 57 56 GO B4 68 72 76 BO B4 BE ST 95 100 104 108 117 106 120 129 133 132 136 120 143 124 152 156 160 164 168 172 176 180 184 B 197 196 200 204 204 217 116 220 KM 28 337 236 M0 2 b 262

]
Y

A
-

245

GRAPHICS SCREEN WORKSHEET (128 x 96)

§F E 23 i ETEEREEEEREEE S EREz 2 2 EE B2 E RN SE B HHEERERBAER e .

-0

246

SET/RESET WORKSHEET (64 x 32)

o

wo

uwn W

n w

n =

mn o

n o

= @

= o

= <

=+ o

™ o

Ll -

™ =

MmN

Mo

-]

™ w0

o~ =

NN

N o

- @

- o

- =

10

12

14

16

18

20

22

24

26

28

247

o8y

8vp

184

v8E

[4:13

PRINT (@@ WORKSHEET (32 x 16)

0ze

882

952

vee

26l

091

8Z1

96

¥9

[4>

—

248

w0 =

omn

-0

M N

[0]

-

@ N

(=10]

-]

wmn

oW

-

Extended Color BASIC Colors

Here are the codes for the nine colors you can create on your
computer:

Code Color

Black
Green
Yellow
Blue

Red

Buff
Cyan
Magenta
Orange

o~V R = O

The color may vary in shade from these, depending on your TV. Color 0
(black) is actually an absence of color.

COLOR-SET
Color | Two-Color Four-Color
Mode Set Combination Combination

4 0 Black/Green —

1 Black/Buff —
3 0 —_— Green/Yellow/Blue/Red

1 — Buif/Cyan/Magenta/Orange
2 0 Black/Green .

1 Black/Buff —
1 0 - Green/Yellow/Blue/Red

1 - Buff/Cvan/Magenta/Orange
0 0 Black/Green —

1 Black/Buff 2eg

MUSICAL NOTE/NUMBER

Number Note
&
C#/D-
D
E-/D#
E/F-
F/E#
F#/G-
G
G#/A-
A
A#/B-
B

._._._.
S oVwRNOUIEWN =

Note: PLAY does not recognize the notation B# or C—. Use the num-
bers 1 and 12 respectively or substitute C for B# and B for C—. A ¢FC
Error occurs if you try to use either of these notations.

249

Extended Color Basic
Error Messages

250

Abbreviation
/0

AO

BS

CN

DD

DN

DS

FC

FD

M

Explanation

Division by Zero. It's impossible to divide
by zero, even for computers.

Attempt to Open a file that is already open.
If you press RESET during cassette 1/0,
you’ll get this message. Turn the computer
off and on again.

Bad Subscript. The subscripts in an array
are out of range. For example, if you have
A(12) in your program without a preceding
DIM line that dimensions array A for 12 or
more elements, you'll get this error. Use
DIM to dimension the array.

Can’t Continue. If you use the CONT com-
mand and you’re at the END of program or
in other non-continue situations, you'll get
this error.

Attempt to Redimension an Array. You can
dimenension an array only once. For exam-
ple, you can’t have DIM A(12) and DIM
A(50) in the same program.

Device Number Error. You may use only
three device numbers with OPEN, CLOSE,
PRINT, or INPUT—O0, -1, or -2. If you use
another number, you'll get this error.

Direct Statement. The data file contains a
direct statement. This error can be caused
by attempting to CLOAD a data file.

Illegal Function Call. This error occurs
when you use a parameter (number or vari-
able) with a BASIC word that is out of
range. For example, PLAY'":"" causes this
error.

Bad File Data. This error occurs when you
PRINT data to a file or INPUT data from the
file, using the wrong type of variable for the
corresponding data. For example, INPUT
#-1,A, when the data in the file is a string,
causes this error.

Bad File Mode. This error occurs when you
try to INPUT data from a file OPEN for
OUTPUT(O), or PRINT data into a file
OPEN for INPUT(I).

Abbreviation

ID

10
LS

NF

NO

oD

oM

0s

ov
RG

SN

ST

™

UL

Explanation

Illegal Direct Statement. For example, you
can use INPUT only as a line in the pro-
gram, not as a command line.

Input past End of file. Use EOF to check to
see when you’ve reached the end of the file.
When you have, CLOSE the file.

Input/Output Error. This error is often
caused by trying to input a program or data
file from a bad tape.

String too long. A string may contain only
255 characters.

NEXT without FOR. NEXT is being used
without a FOR statement. This error also oc-
curs when you have the NEXT lines re-
versed in a nested loop.

File Not Open. You can’t input or output
data to a file until you have OPENed it.

Out of Data. A READ was executed with
insufficient DATA for it to READ. A DATA
statement may have been left out of the
program.

Out of Memory. All available memory has
been used or reserved.

Out of String Space. There is not enough
space in memory to do your string opera-
tions. You may be able to CLEAR more
space.

Overflow. The number is too large for the
computer to handle. (ABS(X)>1E38)

RETURN without GOSUB. A RETURN line
was encountered without a prior GOSUB.

Syntax Error. This could result from a mis-
spelled command, incorrect punctuation,
open parentheses, or an illegal character.
Retype the program line or command.

String formula too complex. A string opera-
tion was too complex to handle. Break it
into shorter steps.

Type Mismatch. This occurs when you try
to assign numeric data to a string variable
(A$=3) or string data to a numeric variable
(A ="DATA").

Undefined Line. The program contains a
GOTO, GOSUB, or other branching line
that asks the computer to go to a nonexist-
ing line number.

251

75t

gs

vvY

Js

vs

0 8ibuy
0 8pIS
qepis
B 8pIs

gy = gebuy
vy = v a/buy

(asnusjodAy) DS

(v a/Buy o} jusoelpe spis) gs

ol 4

(v aibuy eysoddo apis) vs

av

Quantity

Standard Formulas

BASIC Statement

Total Degrees of a Triangle

Solve for Area
Given Side a, Angles B
and C

Given Sides a, band ¢

Law of Sines

Law of Cosines

Law of Tangents

Given Three Sides,
Solve for an Angle

Quadratic
Equations

Algebraic
Equations

180° = A+B+C
A= 180-(B+C)
a’sin B-sin C
Areg = ———————
2sin A

s = lzfa+b+c)
Area = Vs(s—a)(s—b)(s—c)
a sinA sin A
b sin B sin B
& = b®+c?—2bc-cos Aor
a= Vp?+c?—2bc-cos A
a—c tan V2(A-C)

= or
a+c tan Y2(A+C)

b

a-c¢
-tan Y2(A+C)
+c

tan =(A-C) =

s = 'slat+b+c)

r= /{s—ajs=b)s—c)

s
A= 2arctan(-—r—)
. s-—a

ax’+bx+c =0

—b=+ Vp?—4ac

2a

@) =a

X =

1
L
a—ax

log x¥ = y-log x
log xy = log x+log y

log % = logx—log y

TTL = AA+AB+AC

AA = 180—(AE + AC) [then convert AA, AB and
AC to radians]

AREA = SAa2+SIN(AB)-SIN(AC)/(2+SIN(AA))

S = (SA+SB+SC)/2
AREA = SQR(S*(S—SA)*(S—SB)+(S~SC))
SA = (SIN(AA)/SIN(AB))«SB

SA = SQR(SBw2—-SCo2-2+SB+SC-COS(AA))

REM Y = TAN({AA— AC)/2)
Y = (SA—SC)I(SA+ SC)*TAN((AA + AC)/2)

S = (SA+SB+SC)/2
R = SQR((S—SA)*(S—S8B)*(S—-SC)/S)

AA = 2-ATN(RI(S — SA))

REM AsX=2+B-X+C =0
Z = Bol2—-4:AC

X1 = (=B+SQR(Z))/(2+A) 'IFZ> =0
X2 = (~B-SQR(Z))/(2:A) 'IFZ> =0

Z = (AaX)oaY orZ = Ac(X+Y)
Z = Ac(—X) orZ = 1/{AaX)
Z = LOG(X<wY) orZ = Y-LOG(X)
Z = LOG(X*Y) orZ = LOG(X)+LOG(Y)
Z = LOG(XIY) orZ = LOG(X)—-LOG(Y)

" jj00g Y} ul omj

YMOAA S| PueH Ul BjNWIO]

€8T

Function Expressed in Terms of Extended Color Basic Functions.

Function X is in radians.

SECANT SEC(X) = 1/COS(X)

COSECANT CSC(X) = 1/SIN(X)

COTANGENT COT(X) = 1/TAN(X)

INVERSE SINE ARCSIN(X) = ATN(X/SQR(— XX+ 1))

INVERSE COSINE ARCCOS(X) = — ATN(X/SQR(~X"X+1))+1.5708
INVERSE SECANT ARCSEC(X) = ATN(SQR(X*X — 1))+ (SGN(X) - 1)*1.5708
INVERSE COSECANT ARCCSC(X) = ATN(1/SQR(X*X — 1))+ (SGN(X) — 1)"1.5708
INVERSE COTANGENT ARCCOT(X) = —ATN(X)+ 1.5708

HYPERBOLIC SINE SINH(x) = (EXP(X) - EXP(—X))/2

HYPOBOLIC COSINE COSH(X) = (EXP(X) +EXP(— X))/2

HYPERBOLIC TANGENT TANH(X) = —EXP(— X)/(EXP(X) +EXP(—X))*'2+ 1
HYPERBOLIC SECANT SECH(X) = 2/{(EXP(X) + EXP(— X))

HYPERBOLIC COSECANT CSCH(X) = 2/(EXP(X)—EXP(- X))

HYPERBOLIC COTANGENT COTH(X) = EXP(—X)/(EXP(X)—-EXP(-X))*2-+1

INVERSE HYPERBOLIC SINE

ARGSINH(X) = LOG(X + SQR(X"X + 1))

INVERSE HYPERBOLIC COSINE

ARGCOSH(X) = LOG(X + SQR(X*X — 1))

INVERSE HYPERBOLIC

TANGENT ARGTANH(X) = LOG((1+ X)/(1 - X))/2
INVERSE HYPERBOLIC SECANT | ARGSECH(X) = LOG((SQR(-~ X*X + 1)+ 1)/X)
INVERSE HYPERBOLIC

COSECANT ARGCSCH(X) = LOG((SGN(X)*SQR(X*X + 1) + 1)/X)
INVERSE HYPERBOLIC

COTANGENT ARGCOTH(X) = LOG((X+ 1)/(X - 1))/2

suoIUNg PaALRQ

254

Valid Input Ranges

Inverse Sine
Inverse Cosine
Inverse Secant
Inverse Cosecant

Inverse Hyper. Cosine
Inverse Hyper. Tangent
Inverse Hyper. Secant
Inverse Hyper. Cosecant
Inverse Hyper. Cotangent

S1<X<1
-1<X<1
X<-or X=1
X<<-1 or X>1
X=>1

X*¥X<1
0<<X<I1
X<=0
X*X=>1

Certain special values are mathematically undefined, but our functions

may provide invalid values:

TAN and SEC of 90 and 270 degrees
COT and SCS of 0 and 180 degrees

For example, TAN(1.5708) returns a value but TAN(90*.01745329) re-

turns a DIVISION BY ZERO error. 90*.01745329 = 1.5708

Other values that are not available from these functions are:

ARCSIN(-1)
ARCSIN(1)
ARCCOS(-1)
ARCCOS(1)
ARCSEC(-T)
ARCSEC(1

ARCCSC(-1)
ARCCSC(1)

I

-P1/2
P1/2
Pl

0

-Pl

0
-P1/2
PI/2

Please note that the above information may not be exhaustive.

Decimal Address Contents Hex Address
0-1023 System Use 0-3FF
255 Direct Page RAM OFF
1023 Extended Page RAM 3FF
1024-1535 Text Screen Memory 400-5FF

Graphic Screen Memory
1536-3071 Page 1 600-BFF
3072-4607 Page 2 CO00-11FF
4608-6143 Page 3 1200-17FF
6144-7679 Page 4 1800-1DFF
7680-9215 Page 5 1E00-23FF
9216-2559 Page 6 2400-9FF
2560-12287 Page 7 2A00-2FFF
12288-13823 Page 8 3000-35FF
Program and Variable

13824-16383 Storage 3600-3FFF
32768-40959 Extended Color BASIC 8000-9FFF
40960-49151 Color BASIC AD00-BFFF
49152-65279 Cartridge Memory CO00-FEFF
65280-65535 Input/Output FFO00-FFFF

Color Computer Line
Printer Variables

Hexadecimal Decimal Initial Value
Variable Address Address Hex Dec
LPTBTD Baud
MSB 0095 149 00 0
LSB 0096 150 57 87
LPTLND Line Delay
MSB 0097 151 00 0
LSB 0098 152 01 1
LPTCFW Comma Field Width
| 0099 | 153 | 10 | 16
LPTLCF Last Comma Field
| 009A | 154 | 70 | 112
LPTWID Line Printer Width
| 0098 | 155 84 | 132
LPTPOS
| 009C | 156 [o0 | oo

Your computer’s software uses the following initial conditions:

L] L] Ll Ll

The baud rate is 600
The printer width is 132 columns
The printer generates a busy output when not ready
The printer automatically executes a carriage return at 132

columns.

The RS-232 Interface uses a four-pin DIN connector. A diagram of the

Pin out is shown in your introduction manual.

Pin 4 is the computer output to the printer. Pin 3 is ground. Pin 1 is not
used for a printer. Pin 2 should be connected to the busy output (or sta-
tus line) of the printer. If your printer does not provide a status indica-
tion, then this line must be connected to a positive voltage of greater
than 3 volts. This tells the computer that the printer is ready at all times.

In addition, the line delay variable should be set to the proper value.

The following list of alternate values for the line printer variables is pro-

vided as an aid in interfacing nonstandard printers.

Decimal Value

Baud Rate (msb,Isb) Hexadecimal Value
120 baud 458 (1 and 202) 01CA
300 baud 180 00BE
600 baud 87 0057
1200 baud 41 0029
2400 baud 18 0012

255

Line Delay Decimal Value (“)") Hexadecimal Value
(seconds)

288 64 and 0 4000

576 128 and 0 8000

1.15 255 and 255 FFFF
Line Width Decimal Value (") Hexadecimal Value

(characters/line)

16 16 10

32 32 20

64 64 40

255 255 FF

The last comma field variable should be set to the width value—the
comma field width. (The comma field width normally stays at 16.)

In Color BASIC Version 1.0, the output formalt to the printer is 1 start
bit, 7 data bits (LSB first), and 2 stop bits with no parity.

256

ROM Routines

The Color BASIC ROM contains many subroutines that can be called by
a machine-language program. Each subroutlne will be described in the
following format:

NAME — Entry address
Operation Performed
Entry Condition

Exit Condition

Note: The subroutine NAME is only for reference. It is not
recognized by the Color Computer. The entry address is
given in hexadecimal form; you must use an indirect jump to
this address. Entry and Exit Conditions are given for ma-
chine-language programs.

BLKIN = [A006]
Reads a Block from Cassette

Entry Conditions
Cassette must be on and in bit sync (see CSRDON). CBUFAD contains
the buffer address.

Exit Conditions
BLKTYP which is located at 7C, contains the block tyvpe:
0 = File Header
1 = Data
FF = End of File
BLKLEN, located at 7D, contains the number of data bytes in the block
(0-255).
Z* = 1,A = CSRERR = 0 (if no errors).
Z =0,A = CSRERR = 1 (if a checksum error occurs).
Z = 0,A = CSRERR = 2 (if a memory error occurs).

Note: CSRERR = 81
Unless a memory error occurs, X = CBUFAD + BLKEN. If a memory
error occurs, X points to beyond the bad address. Interrupts are masked.
U and Y are preserved, all other modified.

*Z is a flag in the Condition Code (CC) register.

BLKOUT = [A008]
Writes a Block to Cassette

Entry Conditions

The tape should be up to speed and a leader of hex 55s should have
been written if this is the first block to be written after a motor-on.
CBUFAD, located at 7E, contains the buffer address.

BLKTYP located at 7C, contains the block type.

BLKLEN, located at 7D, contains the number of data bytes.

Exit Conditions

Interrupts are masked.

X = CBUFAD + BLKLEN.

All registers are modified.

WRTLDR = [A00C]

Turns the Cassette On and Writes a Leader

Entry Conditions
None

Exit Conditions
None

CHROUT = [A002]
Outputs a Character to Device

CHROUT outputs a character to the device specified by the contents of
6F (DEVNUM).

DEVNUM = -2 (printer)

DEVNUM = 0 (screen)

Entry Conditions
On entry, the character to be output is in A.

Exit Conditions
All registers except CC are preserved.

CSRDON = [A004]
Starts Cassette

CSRDON starts the cassette and gets into bit sync for reading.

Entry Conditions
None

Exit Conditions
FIRQ and IRO are masked. U and Y are preserved. All others are
modified.

GIVABF =[B4F4]
Passes parameter to BASIC

Entry Conditions
D = parameter

Exit Conditions
USR variable = parameter

INTCNV = [B3ED]
Passes parameter from BASIC

Entry Conditions
USR argument = parameter

Exit Conditions
D = parameter

JOYIN = [A00A]
Samples Joystick Pots

JOYIN samples all four joystick pots and stores their values in POTVAL
through POTVAL + 3.

Left Joystick

Up/Down 15A
Right/Left 15B
Right Joystick
Up/Down 15C
Right/Left 15D

For Up/Down, the minimum value = UP.
For Right/Left, the minimum value = LEFT.

Entry Conditions
None

Exit Conditions
Y is preserved. All others are modified.

POLCAT = [A000]
Polls Keyboard for a Character

Entry Conditions
None

Exit Conditions

Z =1,A = 0 (if no key seen).

Z = 0, A = key code, (if key is seen).

B and X are preserved. All others are modified.

259

260

BASIC SUMMARY

STATEMENTS

BASIC statements are commands that tell your computer to do some ac-
tion, such as drawing a circle on the screen. Use BASIC statements as
lines in your program.

AUDIO Connects or disconnects cassette output to TV speaker.

CIRCLE (x,y),r,c,hw,start,end Draws a circle with center at point (x,y),
radius r, specified color ¢, height/width ratio (hw) of 0-4. Circle
can start and end at specified point (0-1).

CLEAR n,h Reserves n bytes of string storage space. Erases variables. h
specifies highest BASIC address.

CLOAD Loads specified program file from cassette. If filename is not
specified, first file encountered is loaded. Filename can be a maxi-
mum of 8 characters.

CLOADM Loads machine-language program cassette. You may specify
an offset address to add to the loading address.

CLOSE#DEV Closes access to specified file. If you do not specify de-
vice, all open files are closed. '

CLS ¢ Clears display to specified color ¢. If you do not specify color,
green is used.

COLOR (foreground,background) Sets foreground and background
color.

CONT Continues program execution after you have pressed (BREA
or used the STOP statement.

CSAVE Saves program on cassette (program name can be 8 characters
or fewer). If you specify A, program is saved in ASCIl format.

CSAVEM name, start, end, transfer Saves a machine-language file on
cassette.

DATE Stores data in your program. Use READ to assign data to
variables.

DEF FN Defines numeric function.

DEFUSR n Defines entry point for USR function n.n = 0-9.
DEL Deletes program lines.

DIM Dimensions one or more arrays.

DRAW Draws a line beginning at specified starting point of specified
length of specified color. Also draws to scale, draws blank lines,
draws nonupdated lines, and executes substrings. If you do not
specify starting point, last DRAW position or (128,96) is used.

EDIT Lets you edit a program line.

END Ends program.

EXEC (address) Transfers control to machine-language programs at
specified address. If you omit address, control is transferred to ad-
dress set in last CLOADM.

FOR...TO STEP/NEXT Creates a loop in program that the computer
must repeat from the first number to the last number you specify.
Use STEP to specify how much to increment the number each
time through the loop. If you omit STEP, the computer uses 1.

GET (start)-(end),destination,G Reads the graphic contents of a rectan-
gle into an array for future use by PUT.

GOSUB Calls a subroutine beginning at specified line number.
GOTO Jumps to specified line number.

IF test THEN . .. action 1 ELSE, action 2 Performs a test. If it is
true, the computer executes actioni. If false, the computer exe-
cutes action 2.

INPUT Causes the computer to stop and await input from the
keyboard.

INPUT#-1 Input data from cassette.

INSTR (position, search, target) Searches for the first occurrence of
target string in search string beginning at position. Returns the po-
sition at which the match is found.

LET Assigns value to variable (optional).
LIST Lists (displays) specified line(s) or entire program on screen.
LLIST Lists specified program line(s) or entire program to printer.

LINE (x1,y1)-(x2,y2), PSET or PRESET,BF Draws a line from (x1,y1) to
(x2,y2). If you omit (x1,y71), the last end point or (128,96) is used.
PSET selects foreground color, and PRESET selects background
color. B draws a box with (x1,y1) and (x2,y2) as the opposing cor-
ners. BF fills in the box with foreground color.

LINE INPUT Inputs line form keyboard.

MIDS$ (oldstr, position, length) Replaces a portion of oldstr with an-
other string.

MOTOR Turns cassette ON or OFF,

NEW Erases everything in memory.

ON...GOSUB Multiway branch to call specified subroutines.
ON ... GOTO Multiway branch to specified lines.

OPEN m,#dev,f Opens specified file (f) for data transmission (m) to
specified device (dev). m may be | (Input) or O (Output). dev may
be #0 (screen or keyboard), #-1 (cassette), or #-2 (printer).

PAINT (x,y),c,b Paints graphic screen starting at point (x,y) with speci-
fied color (c) and stopping at border (b) of specified color.

PCLEAR n Reserves n number of 1.5 K graphics memory pages.

PCLS ¢ Clears screen with specified color (c). If you omit color code,
current background color is used.

261

262

PCOPY Copy graphics trom source page to destination page

PLAY Plays music of specified note (A-G or 1-12), octave (O), volume
(V), note-length (L), tempo(T), pause (P), and allows execution of
substrings. Also sharps (# or +) and flats (-).

PMODE mode, start-page Selects resolution and first memory page.

POKE (location, value) Puts value (0-255) into specified memory
location.

PRESET Resets a point to background color.

PRINT Prints (displays) specified message or number on TV screen.
PRINT #-1 Writes data to cassette.

PRINT #-2 Prints an item or list of items on the printer.

PRINT TAB Moves the cursor to specified column position.

PRINT USING Pfints numbers in specified format.

PRINT @ scr pos Prints specified message at specified text screen
position,

PSET (x,y,c) Sets a specified point (x,y) to specified color (c). If you
omit ¢, foreground is used.

PUT (start)-(end), source, action Stores graphics from source onto
start/end rectangle on the screen. (Array rectangle size must match
GCET rectangle size.)

READ Reads the next item in DATA line and assigns it to specified
variable.

REM Lets you insert comment in program line. The computer ignores
everything after REM.

RENUM newline, startline, increment Lets you renumber program
lines.

RESET (x,y) Resets a point.

RESTORE Sets the computer’s pointer back to first item on the first
DATA line.

RETURN Returns the computer from subroutine to the BASIC word fol-
lowing GOSUB.

RUN Executes a program.

SCREEN screen-type, color-set Selects either graphics (1) or text (0)
screen and color-set (0 or 1).

SET (x,y,c) Sets a dot at specified text screen position to specified
color.

SKIPF Skips to next program on cassette tape or to end of specified
program. .

SOUND tone, duration Sounds specified tone for specified duration.
STOP Stops execution of a program.
TROFF Turns off program tracer.

TRON Turns on program tracer.

FUNCTIONS

BASIC functions are built-in subroutines that perform some kind of com-
putation on data, such as computing the square root of a number. Use
BASIC functions as data within your program lines.

ABS (numeric) Computes absolute value.

ASC (str) Returns ASCII code of first character of specified string.
ATN (numeric) Returns arctangent in radians.

CHR$ (code) Returns character for ASCII, control, or graphics code.
COS (numeric) Returns cosine of an angle given in radians.

EOF (dev) Returns FALSE = 0 if there is more data; TRUE = —1 if
end of file has been read.

EXP (numeric) Returns natural exponential of number (e number).
HEX$ (numeric) Computes hexadecimal value. PRINT HEX$ (30)
INKEY$ Checks the keyboard and returns the key being pressed (if
any).
INT (numeric) Converts a number to an integer.
JOYSTK (j) Returns the horizontal or vertical coordinate (j) of the left
or right joystick:
0 = horizontal, left joystick
1 vertical, left joystick

2 horizontal, right joystick
3 = vertical, right joystick

|

LEN (str) Returns the length of a string.
LOG (numeric) Returns natural logarithm.

MEM Finds the amount of free memory.

MIDS$ (strpos,dength) Returns a substring of another string starting at
pos. If you omit fength, the entire string right of position is returned.

PEEK (mem loc) Returns the contents of specified memory location.

POINT (x,y) Tests whether specified graphics cell is on or off. x (hori-
zontal)=0-63; y (vertical) =0-31. The value returned is —1 if the
cell is in a text character mode; O if it is off, or the color code if it is
on. See CLS for color codes.

POS (dev) Returns current print position.

PPOINT (x,y) Tests whether specified graphics cell is on or off and re-
turns color code of specified cell.

RIGHTS$ (str.length) Returns right portion of string.

RND (n) Generates a “random’’ number between 1 and nifn > 1, or
between 0 and 1 if n = 0.

SGN (numeric) Returns sign of specified numeric expression:
—1=negative; 0=0; 1= positive.

SIN (numeric) Returns sine of angle given in radians.

263

264

STRINGS$ (length, code, or string) Returns a string of characters (of
specified length) specified by ASCIl code or by the first character of
the string.

STR$ (numeric) Converts a numeric expression to a string.
SQR (numeric) Returns the square root of a number.

TAN (numeric) Returns tangent of angle given in radians.
TIMER Returns contents or lets you set timer (0-65535).
USRn (numeric) Calls your machine-language subroutine.
VAL (str) Converts a string to a number.

VARPTR (var) Returns addresses of pointer to the specified variable.

OPERATORS

BASIC operators perform some kind of operation on data, such as add-
ing two numbers.

Exponentiation

-+ Unary negative, positive

*/ Multiplication, division

+,— Addition and concatenation, subtraction
< > = gEsna K> Relational tests

NOT

AND

OR

INDEX

$ See STRING$

; See print

, See print

:, separating BASIC statements 61
-+, addition 15

-+, concatenation 65

—, subtraction 15

*, multiplication 15

/. division 15
exponentiation 174
26

@GHIFD@) 18,158

55

(SPACEBAR) 53
2/0 ERROR 16
?LS ERROR 66
?0S ERROR 65
?SN ERROR 16
¢TM ERROR 20
ABS 79
absolute motion 117
alphabetizing See sorting
analyzing 162
AND
operator 78
PUT parameter 125
angle 199
Answers to Do-It-Yourself Programs 207-25
arc See CIRCLE
arctangent See ATN
arrays
multidimensional 162
numeric 150
string 155
ASCII character codes 241
ATN 175
B See DRAW
BF See DRAW
background color 92
BASIC summary 260-62
black-on-green 18
Bull's Eye, program 108
Card Dealing, program 153, 166
change, edit key 54
CIRCLE 107
CLEAR 66
CLOSE 145
CLS 16
COLOR 92
color See also CIRCLE, COLOR, DRAW, PAINT,
PSET

265

266

INDEX

codes 16
modes 99
sets 96
foregiround and background 92
reference 249
concatenate(+) 65
constants 195
CONT 75
correcting mistakes See errors
COS 174
cosine See COS
Craps, program 46
Crooked Line, program 93
current graphics screen 103
DATA 48
data
numeric v string 15, 20-21
sorting 159
storing on tape 145
debugging 193
DEFFN 193
DEFUSR 198
degrees 177
DEL 57
delete
edit key 54
program line 26, 57
derived functions 253
device See OPEN
DIM 124
division(/) 15
division error 16
Do-lt-Yourself Programs
answers 207-25

Bull's Eye 108
Card Dealing 153, 166
Craps 46

Crooked Line 93
House 93, 108, 110, 113
Ilce Cube 117
Inventory Shopping List 238
Lightning 106
Mailing List 183
Memory Test 240
Rolling Dice 45
Russian Roulette 44
Sine Waves 174
Speed Reading 240
Star 116

Triangle 172

Typing Test 73

INDEX

Vocabulary 48
Voting Tabulation 150
When Saints Go Marchin’ In 140
Writing an Essay 156
Yo-Yo- 104
DRAW 115
E notation 79
EDIT 53
Ellipse 109
ELSE 77
END 40
EOF 145
errors
¢/0 ERROR 16
2LS ERROR 66
?OS ERROR 65
?SN ERROR 16
¢TM ERROR 20 _
correcting a program line 26
correcting a typographical error 13
description of all error messages 250-5T1
EXP 177
exponentiation 174
exponents 79
extend, edit key 56
field specifiers See PRINT USING
FIX 177
flipping screens 103
foreground color 92
FOR ... NEXT 30
formulas, mathematical 252
functions
BASIC 263-64
derived 253
games 43
GET 123
GIVABF, ROM routine 199
GOSUB 60
graphics
memory 98, 102
resolution 99
screen 103
Graphics Screen Worksheet
grid 244-46
use of 85
green-on-black 18
grid, screen See Graphics Screen
Worksheet, PRINT @ Worksheet,
SET/RESET Worksheet
grid size 99
hack, edit key 55
height/width ratio See CIRCLE

267

268

INDEX

HEX$ 196
House, program 93, 108, 110, 113
Ice Cube, program 117
IF 40
information See Data
INKEYS$S 71
INPUT 25
insert, edit key 55
INSTR 181
INT 50
INTCNV 220
Inventory Shopping List, program 238
joysticks 129
JOYSTK See joysticks
kill, edit key 56
LEFTS 66
LEN 65
LET 193
Lightning, program 106
LINE 89
LINE INPUT 186
line printer variables 255-56
LIST 24
list, edit key 53
LLIST 157
LOG 176
logarithm See LOG
loops 30-39
lowercase codes 242-43
machine-language subroutines 197-200
returning values 201
stack space, use with USR 202
Mailing List, program 7183
mathematical for mulas 252
MEM 76
memory See also MEM, graphics memory
description 19
map 254
Memory Test, program 240
MID$ 67, 183
mistakes See errors
modes, DRAW parameter 115
motion commands, DRAW parameter 115
multiplication(*) 15
musical notes See PLAY
nested loop 37
NEXT 30
NOT, PUT parameter 125
notes, musical 134
numbers 15
numeric
arrays 150

INDEX

data 21
octave See PLAY
Odds and Ends 205
ON GOSUB 76
ON GOTO 77
OPEN 145
operators

—+, addition 15

-+, concatenation 65
—, subtraction 15

*, multiplication 15

/ . division 15

(D, exponentiation 174
AND, logical 78

OR, logical 78
options, DRAW parameter 115
OR

operator 78

PUT parameter 125
pages

clearing(PCLEAR) 104
description 102
copying(PCOPY) 105
PAINT 112
parentheses, rules on 63
pause-length See PLAY
PCLEAR 104
PCLS 96
PCOPY 105
PEEK 131
PLAY 133
PMODE 98-106
POINT 127
POS 181
PPOINT 87
PRESET 87, 91
PRESET, PUT parameter 125
print

display (PRINT) 14
printer (PRINT $#-2) 191
punctuation, rules on 27
recorder (PRINT #-1) 145
PRINT @ 45
PRINT (@ Worksheet

grid 248

use of 45
printer

line printer variables 255-56
listing a program (LLIST) 157
printing data (PRINT #-2) 191
use of 157
PRINT USING 187

269

INDEX

prompt 13

PSET 85

PSET, PUT parameter 125
PSET, LINE parame er 89
PUT 123

radians 173

READ 48

relative motion 117
renumber, program lines 57
RESET 127

resolution 99

RESTORE 49

RETURN 60

reversed characters 18, 158
RIGHTS 66

RND 43

Rolling Dice, program 45
ROM routines 257-59

RUN 24

Russian Roulette, program 44
sample programs 226-38
scale See PLAY

scale a display See DRAW
scientific notation See E notation
search See EDIT

SCREEN 95

screen positions See Graphics Screen

Worksheet, PRINT @ Worksheet,
SET/RESET Worksheet
SET 127
SET/RESET Worksheet
grid 247
use of 128
SGN 79
SIN 173
sine See SIN
Sine Waves, program 174
sorting 159
SOUND 17, 33
Speed Reading, program 240
square root See SQR
SQR 172
stack space, use w/mach-1 202
Star, program 116
start page 103
STEP 32
STOP 75
STR$ 79
string See also LEFT$, LEN, MID$, RIGHT$
arrays 155
data 21
description 15, 20, 180

270

INDEX

STRING$ 180

subscripted variables See arrays

subroutines See GOSUB, machine-
language subroutines

TAN 175

tangent See TAN

taping 145

technical information See machine-

language subroutines, ROM routines,

memory map, printer variables
tempo See PLAY
THEN 40
TIMER 194
tone, SOUND parameter 17
Triangle, program 172
trigonometry functions 172
TROFF 193
TRON 193
truncate See FIX
Typing Test, program 73

USR 198
VAL 73
valid input ranges 254
variables
simple 19-22
subscripted See arrays
VARPTR 200

video memory 95

Vocabulary, program 48
volume See PLAY

Voting Tabulation, program 150

When Saint Go Marchin’ In, program 140

whole numbers See FIX, INT

Word Processing, program 157, 182

worksheets See Graphics Screen
Worksheet, PRINT @ Worksheet,
SET/RESET Worksheet

Writing an Essay, program 156

Yo-Yo, program 104

271

RADIO SHACK A DIVISION OF TANDY CORPORATION

PRINTED IN KOREA
5A4 811013700A

	Front Cover
	Copyrights
	To All New Customers...
	And to All Upgrading Customers...
	This Is How to Start
	How Do You Talk to a Computer?
	Contents
	Section I - The Basics
	Chapter 1 - Meet Your Computer
	A Color Calculator, No Less!
	It Has Its Rules...
	It's a Show-off Too
	Computer Sound Off - One, Two...
	Before You Continue
	Learned in Chapter 1

	Chapter 2 - Your Computer Never Forgets (...unless you turn it off...)
	The Computer is Fussy About Its Rules
	Learned in Chapter 2

	Chapter 3 - See How Easy It Is?
	Spotlight Your Name
	Color/Sound Demonstration
	Add Polish to the Program
	Learned in Chapter 3

	Chapter 4 - Count the Beat
	Counting by Twos
	Counting the Sounds
	But Can It Sing?
	Learned in Chapter 4

	Chapter 5 - Watch the Clock
	Counting Within the Time
	Making a Clock
	Learned in Chapter 5

	Chapter 6 - Decisions, Decisions...
	Learned in Chapter 6

	Chapter 7 - Games of Chance
	A Random Show
	Russian Roulette
	Rolling the Dice
	Learned in Chapter 7

	Chapter 8 - Reading
	Now Have It Build Your Vocabulary
	Learned in Chapter 8
	First, Build Your Computer's Vocabulary...

	Chapter 9 - Writing
	Don't Throw Away That Line... Edit It! (EDIT)
	Move on Down the Line (Cursor Movement)
	Change the Line (CHANGE)
	You're Out! (DELETE)
	Squeeze It All In (INSERT)
	Hackamore or Hackaless? (HACK)
	Kill the... Ah... Mistake (KILL)
	Extended Color Basic Strikes Again! (EXTEND)
	Mass Delete (DELETE)
	Your Number's Up! (RENUM)
	Learned in Chapter 9

	Chapter 10 - Arithmetic
	Give the Computer a Little Help
	Saving Routines
	Learned in Chapter 10

	Chapter 11 - Words, Words, Words...
	Twisting Words
	Learned in Chapter 11

	Chapter 12 - A pop Quiz
	Beat the Computer
	Checking Your Answers
	A Computer Typing Test
	Learned in Chapter 12

	Chapter 13 - More Basics
	For Long Programs...
	Help with Typing
	Does the Job Say "AND" or "OR"?
	More Arithmetic
	Congratulation, Programmer!
	Learned in Chapter 13

	Section II - Sights and Sounds
	Chapter 14 - Let's Get to the Point
	...But What About the Color?
	Now You See It... Now You Don't
	The Last Point
	Learned in Chapter 14

	Chapter 15 - Hold that Line!
	That's Some Line You Have
	X Marks the Spot
	How About Dropping a Line
	To B (a Box) or Not to B...
	Fill It Up
	That's Color with a Capital C, Capital O, Capital...
	Learned in Chapter 15

	Chapter 16 - The Silver Screen
	A Word About Video Memory
	Lighting the Silver Screen
	Clearing the Silver Screen (PCLS)
	Learned in Chapter 16

	Chapter 17 - Minding Your PMODEs
	"Lines" in Mode 4
	Colors à la Mode
	"Lines" - Through Thick and Thin
	Learned in Chapter 17

	Chapter 18 - Finding the Right Pages
	Flipping Screens
	Adding Pages
	Up and Down, Up and Down
	PCOPY
	Learned in Chapter 18

	Chapter 19 - Going in Circles
	Coloring the Circle
	Putting on the Squeeze
	From Start to Finish...
	Learned in Chapter 19

	Chapter 20 - The Big Brush-Off
	Learned in Chapter 20

	Chapter 21 - Draw the Line Somewhere
	Setting the Square on Edge (Diagonal Lines)
	Absolute M v Relative M
	Tipping the Scales
	Color Me...
	What's Your Angle?
	Just Shootin' Blanks
	What! More Options?
	String Constants v String Variables
	Learned in Chapter 21

	Chapter 22 - GET and PUT: The Display Went That Array
	Storing the Rectangle
	Put Not What You See
	Learned in Chapter 22

	Chapter 23 - A New Kind of Point
	Setting Two Dots
	The Computer's Face
	If You Have the Joysticks...
	Painting with Joysticks
	Learned in Chapter 23

	Chapter 24 - Play it Again, TRS-80
	Listen Carefully...
	Let's Compare Notes (NOTE)
	A New "Note"-ation
	Whole Notes, Half Notes, Quarter Notes... (NOTE-LENGTH)
	Love That Dotted Note
	Let's Go Up (or Down) an Octave or Two (OCTAVE)
	Play It Again - Louder! (VOLUME)
	A Moment of Silence, Please (PAUSE)
	It's Time to Pick Up the Tempo (TEMPO)
	Executing the Substring (X)
	One Further Note... (+, -, <, >)
	Roll Over, Beethoven
	Learned in Chapter 24

	The Real Thing
	Spiral
	Fantastic!
	Box
	Projection Studies
	In-Out
	Navaho Blanket
	After the Boom Is Over...
	Home, Sweet Home
	Painted Lace
	Open and Closed Cubes
	Rolling in the Clover
	Random Graphics
	Riding the Waves

	Section III - Getting Down To Business
	Chapter 25 - Taping
	An Electronic Card Catalog
	Learned in Chapter 25

	Chapter 26 - Managing Numbers
	A Second Array
	Deal the Cards
	Learned in Chapter 26

	Chapter 27 - Managing Words
	Writing an Essay (...A Novel, Term Paper...)
	Using the Printer
	Learned in Chapter 27

	Chapter 28 - Sorting
	Learned in Chapter 28

	Chapter 29 - Analyzing
	Third Dimension
	Learned in Chapter 29

	Section IV - Back to Basics
	Chapter 30 - The Number Game
	Exponentiation
	TRIG Functions
	Degrees v Radians
	Sine Waves
	Learned in Chapter 30

	Chapter 31 - It Don't Mean a Thing If It Ain't Got That String
	STRING$
	I Think I See Some-String Ahead! (INSTR)
	Never Change Horses in Midstring (MID$)
	Learned in Chapter 31

	Chapter 32 - In One Door And Out the Other
	A Line Drive (LINE INPUT)
	Customized Printing (PRINT USING)
	De-Vice Squad
	Learned in Chapter 32

	Chapter 33 - A Little Byte of Everything
	LET
	TRON/TROFF Commands
	Time After Timer... (TIMER)
	Hexadecimal and Octal Constants
	Learned in Chapter 33

	Chapter 34 - Using Machine-Language Subroutines
	The BASIC Program
	ML Subroutine Listing
	Passing Values to an ML Subroutine
	Returning Values to BASIC
	Using Stack Space

	Section V - Odds and Ends
	Suggested Answers To Do-It-Yourself Programs
	Do-It-Yourselft Program 4-4
	Do-It-Yourselft Program 5-2
	Do-It-Yourselft Program 5-3
	Do-It-Yourselft Program 7-2
	Do-It-Yourselft Program 7-3
	Do-It-Yourselft Program 8-2
	Do-It-Yourselft Program 10-1
	Do-It-Yourselft Challenger Program (Chap. 11)
	Do-It-Yourselft Program 14-2
	Do-It-Yourselft Program 15-1
	Do-It-Yourselft Program 15-2
	Do-It-Yourselft Program 15-3
	Do-It-Yourselft Program 16-1
	Do-It-Yourselft Program 18-1
	Do-It-Yourselft Program 18-2
	Do-It-Yourselft Program 19-1
	Do-It-Yourselft Program 19-3
	Do-It-Yourselft Program 19-4
	Do-It-Yourselft Program 20-1
	Do-It-Yourselft Program 20-3
	Do-It-Yourselft Program 21-1
	Do-It-Yourselft Program 21-2
	Do-It-Yourselft Program 21-3
	Do-It-Yourselft Program 21-4
	Do-It-Yourselft Program 21-5
	Do-It-Yourselft Program 21-6
	Do-It-Yourselft Program 22-1
	Do-It-Yourselft Program 24-1
	Do-It-Yourselft Program 24-2
	Do-It-Yourselft Program 25-1
	Do-It-Yourselft Program 26-1
	Do-It-Yourselft Program 26-2
	Do-It-Yourselft Program 27-1
	Do-It-Yourselft Program 27-2
	Do-It-Yourselft Program 27-3
	Do-It-Yourselft Program 27-4
	Do-It-Yourselft Program 28-1
	Do-It-Yourselft Program 29-1
	Do-It-Yourselft Program 30-1
	Do-It-Yourselft Program 30-2
	Do-It-Yourselft Program 30-3
	Do-It-Yourselft Program 30-4
	Do-It-Yourselft Program 30-5
	Do-It-Yourselft Program 30-6
	Do-It-Yourselft Program 31-1
	Do-It-Yourselft Program 31-2
	Do-It-Yourselft Program 31-3
	Do-It-Yourselft Program 31-4
	Do-It-Yourselft Program 32-1
	Do-It-Yourselft Program 32-2
	Do-It-Yourselft Program 32-3

	Sample Programs
	Sample Program #1
	Sample Program #2
	Sample Program #3
	Sample Program #4
	Sample Program #5
	Sample Program #6
	Sample Program #7
	Sample Program #8
	Sample Program #9
	Sample Program #10
	Sample Program #11
	Sample Program #12
	Sample Program #13
	Sample Program #14
	Sample Program #15
	Sample Program #16
	Sample Program #17
	Sample Program #18
	Sample Program #19
	Sample Program #20
	Sample Program #21
	Inventory Shopping List
	Speed Reading
	Memory Test

	ASCII Character Codes
	Lowercase Codes

	Graphics Screen Worksheet (128x192)
	Graphics Screen Worksheet (256x192)
	Graphics Screen Worksheet (128x96)
	SET/RESET Worksheet (64x32)
	PRINT @ Worksheet (32x16)
	Extended Color BASIC Colors
	Extended Color Basic Error Messages
	A Formula in Hand Is Worth Two in the Book...
	Derived Functions
	Valid Input Ranges
	Color Computer Line Printer Variables
	ROM Routines
	BASIC Summary
	Index

	Back Cover

