

ARCHER\$

1988 EDITION

INCLUDES OVER 94,000 SEMICONDUCTOR SUBSTITUTIONS

INTEGRATED CIRCUITS INDEX BY GENERIC NUMBER

GENERIC	CATALOG	DESCRIPTION	PAGE	GENERIC	CATALOG	DESCRIPTION	PAGE
AY-3-8910A	276-1787	PROG SND GEN	106	555	276-1723	TIMER	65
CTS256AL2	276-1786	CODE-TO-SPCH	77	556	276-1728	DUAL TIMER	66
HYB4164-P2	276-2506	MEMORY (RAM)	29	567	276-1721	TONE DECODER	72
MC1488	276-2520	QUAD LINE DRV	45	723	276-1740	ADJ REG	69
MC1489	276-2521	QUAD LINE RCVR	48	741	276-007	OP AMP	62
MSM2764RS	276-1251	MEMORY (EPROM)	35	1458	276-038	DUAL OP AMP	63
SP0256	276-1784	SPCH PROC	96	3909	276-1705	LED FLASHER/OSC	73
SSI202	276-1303	DTMF RCVR	74	4001	276-2401	NOR GATE	21
TA7205AP	276-705	AUD AMP	57	4011	276-2411	NAND GATE	22
TDA1520A	276-1305	AUD AMP	58	4013	276-2413	DUAL FLIP-FLOP	23
TDA7000	276-1304	FM RADIO	115	4017	276-2417	DECADE CNT	24
TLC548	276-1796	A-D CONV	50	4049	276-2449	INV HEX BUFFER	25
TLC555	276-1718	TIMER	54	4066	276-2446	QUAD BILATERAL SW	26
TMS4256	276-1252	MEMORY (RAM)	36	7400	276-1801	NAND GATE	39
UM3482	276-1797	MELODY GEN	27	7404	276-1802	HEX INV	40
317T	276-1778	ADJ REG	67	7408	276-1822	AND GATE	41
324	276-1711	QUAD OP AMP	64	7447	276-1805	BCD DECODER/DRV	42
339	276-1712	COMPARATOR	71	7490	276-1808	BCD COUNTER	44
353	276-1715	WD BAND AMP	60	7805	276-1770	5V REG	70
383	276-703	AUD PWR AMP	55	7812	276-1771	12V REG	70
386	276-1731	AUD PWR AMP	56	7815	276-1772	15V REG	70

INTEGRATED CIRCUITS INDEX BY CATALOG NUMBER

GENERIC	CATALOG NUMBER	DESCRIPTION	PAGE NUMBER	CATALOG NUMBER	GENERIC NUMBER	DESCRIPTION	PAGE NUMBER
276-007	741	OP AMP	62	276-1772	7815	15V REG	70
276-038	1458	DUAL OP AMP	63	276-1778	317T	ADJ REG	67
276-703	383	AUD PWR AMP	55	276-1784	SP0256	SPCH PROC	96
276-705	TA7205AP	AUD AMP	57	276-1786	CTS256AL2	CODE-TO-SPCH	77
276-1251	MSM2764RS	MEMORY (EPROM)	35	276-1787	AY-3-8910A	PROG SND GEN	106
276-1252	TMS4256	MEMORY (RAM)	36	276-1796	TLC548	A-D CONV	50
276-1303	SSI202	DTMF RCVR	74	276-1797	UM3482	MELODY GEN	27
276-1304	TDA7000	FM RADIO	115	276-1801	7400	NAND GATE	39
276-1305	TDA1520A	AUD AMP	58	276-1802	7404	HEX INV	40
276-1705	3909	LED FLASHER/OSC	73	276-1805	7447	BCD DECODER/DRV	42
276-1711	324	QUAD OP AMP	64	276-1808	7490	BCD COUNTER	44
276-1712	339	COMPARATOR	71	276-1822	7408	AND GATE	41
276-1715	353	WD BAND AMP	60	276-2401	4001	NOR GATE	21
276-1718	TLC555	TIMER	54	276-2411	4011	NAND GATE	22
276-1721	567	TONE DECODER	72	276-2413	4013	DUAL FLIP-FLOP	23
276-1723	555	TIMER	65	276-2417	4017	DECADE CNT	24
276-1728	556	DUAL TIMER	66	276-2449	4049	INV HEX BUFFER	25
276-1731	386	AUD PWR AMP	56	276-2466	4066	QUAD BILATERAL SW	26
276-1740	723	ADJ REG	69	276-2506	HYB4164-P2	MEMORY (RAM)	29
276-1770	7805	5V REG	70	276-2520	MC1488	QUAD LINE DRV	45
276-1771	7812	12V REG	70	276-2521	MC1489	QUAD LINE RCVR	48

TABLE OF CONTENTS

INTRODUCTION
HOW TO USE THE BOOK
CARE AND HANDLING OF TRANSISTORS
SILICON OR GERMANIUM?
OPERATING CONSIDERATIONS
SILICON vs SELENIUM RECTIFIERS
SOLDERING PRECAUTIONS
ABOUT CASE DIMENSIONS 3.4
GENERAL PRECAUTIONS
TESTING A TRANSISTOR 4.5
HANDLING OF INTEGRATED CIRCUITS
DIODES BECTIFIEBS AND ZENEBS
BIPOLAB TRANSISTORS
SPECIAL TRANSISTOR (FET) 7-10
SPECIAL PURPOSE DEVICES (VARISTOR)(SCR)(TRIAC) 11 12
OPTOELECTRONICS 12.20
INTEGRATED CIRCUITS (See index inside front cover)
Digital (CMOS)
Digital (Momony) 20.29
Digital (Memory)
Digital (TTL)
Interface (Driver)
Linear (Audio)
Linear (OP Amp)
Linear (Timer)
Linear (Volt Reg)
Linear (Miscellaneous)
MOS (CMOS)
MICROCOMPUTER (8-BIT)
N-Channel MOS (Audio)
N-Channel ION Implant (P Sound Generator)106-114
FM RECEIVER
QUICK CASE REFERENCE
SEMICONDUCTOR CROSS REFERENCE NOTES
QUICK INDEX
MASTER INDEX BY CATALOG NUMBER
IMPORTANT SUGGESTIONS ON THE USE
AND REPLACEMENT OF TRANSISTORS
CROSS REFERENCE/SUBSTITUTION LISTING
MAJOR SEMICONDUCTOR COMPONENTS
GLOSSARY OF WORDS, SYMBOLS AND ABBREVIATIONS
ARCHER SEMICONDUCTOR REPLACEMENT GUIDE
ALPHABETICAL/NUMERIC INDEX (Inside back cover)
Although great care has been taken in the preparation of this Reference Guide to ensure the technical correctness, no responsibility

is assumed by Radio Shack for any consequences of the use of items listed. Nor does Radio Shack assume any responsibility for any infringements of patents or other rights of third parties which may result from its use.

© Copyright 1987, Radio Shack, A Division of Tandy Corporation, Fort Worth, TX 76102

All Rights Reserved.

ARCHER and Radio Shack are trademarks of Tandy Corporation.

INTRODUCTION

This SEMICONDUCTOR REFERENCE HANDBOOK is intended to be just that —a reference handbook. It is not a definitive text book on semiconductors. It is a compilation of data on Radio Shack's line of prime-quality ARCHER[®]semiconductors. Every ARCHER device covered in this Handbook is guaranteed prime—they are not "fall-outs" or "seconds"; all are top-quality, with known JEDEC, EIA or manufacturer's numbers.

At the back of the book is a cross-reference listing for replacement of Transistors, Diodes and other interchangeable semiconductor devices. The total number of cross-referenced devices exceeds 94,000. These cross-reference/replacement listings are computer-selected and are based on careful analysis of important parameters of the listed devices.

NOTE: If you can't find a replacement listing for a device you require, refer to the specification listings of the appropriate ARCHER family device. Often you will be able to make suitable replacements based on the information presented.

Each ARCHER replacement should meet or exceed the required parameters. However, due to differences in Quality Control and Manufacturing procedures (which often allow for or result in broad parameter variations), and because many of the ARCHER devices are capable of better performance than the original, Radio Shack does not guarantee, nor does it imply, that the listed items will provide an exact replacement in **every** instance. Therefore we recommend that you check the voltage and current requirements of the circuit (and other pertinent specifications) before replacement and compare with the specifications listed for that particular ARCHER device.

HOW TO USE THIS BOOK

This book has been prepared to aid in BOTH replacement and original applications of Semiconductor devices. The information included will be invaluable for the service technician as well as the circuit designer (whether he be an engineer, hobbyist, student or electronics experimeter).

We have included hints on handling Semiconductor devices, operating considerations, and some simple tests to aid you in evaluating the quality of the device in existing equipment (and thus the need for replacement). Also, a complete section on the specifications for each of the ARCHER devices is included; if there is any question in your mind about replacement equivalents or original use, refer to the appropriate category in the book. You will find the important characteristics specified there.

The next to last section is an extensive listing of replacement and cross reference between other manufacturer's numbers (both JEDEC/EIA 2N—numbers and in-house designations) and the ARCHER devices. This listing provides for the substitution of over 94,000 semiconductors with ARCHER devices.

The final section includes case style drawings and some handy reference notes, a comprehensive glossary of commonly used words, plus symbols and abbreviations.

CARE AND HANDLING OF TRANSISTORS

Most modern transistors are somewhat immune from mechanical shock; however, it is always a good idea to keep them from excessive mechanical shocks. especially the metal-case type (avoid dropping, etc). When cutting transistor leads, use scissor-type cutting tools (rather than diagonal cutting tools which use a crimping action). Crimp-type cutting tools produce a mechanical shock along the lead which when transmitted to the semiconductor chip or material can cause fracture. Consider the force with which the cut lead flies off the crimp-type cutting tool and you have a good idea of the intensity of the equal and opposite force which acts on the lead going into the device.

It is always a good practice to use a heat-sink tool on a transistor lead when soldering (use a low-wattage iron—30-watts or less). Heat from soldering can cause problems (especially with certain types of semiconductor devices). Thus, to be sure, always use a heatsink on the lead when soldering. Gripping the lead with long nose pliers between the solder connection and the case of the device makes a good heat-sink; or use a tool designed for such use.

SILICON OR GERMANIUM?

The quickest way to determine if a transistor is germanium or silicon type, is to check the normal emitterbase voltage drop. With NPN devices, if the base is approximately 0.25 volts positive with respect to the emitter, it is a germanium type. If the voltage is about 0.65 volts. it is a silicon type. For PNP devices, the voltage will be the same value, but opposite in polarity (0.25 volts for germanium and 0.65 for silicon).

OPERATING CONSIDERATIONS

Before replacing an original-equipment device with the recommended Archer Type:

(A) Compare the lead or terminal arrangement of the Archer replacement device with the lead or terminal arrangement of the original device. If these arrangements are different, and the original transistor is a "plug in" type, bend the leads of the ARCHER device so that the base, emitter and collector leads will mate with the original transistor leads. Trim the leads after soldering in place.

CAUTION: Be particularly careful about "pin-circle" and "in-line" lead break-out type transistors. Often one manufacturer makes a type with "in-line" leads, while another may make the same type with "pin-circle" configuration. **Doublecheck both the original and the replacement device before soldering or plugging in transistors.**

BOTTOM VIEW

(B) Certain considerations are involved whenever an original equipment transistor is replaced by one having a different type designation. When an ARCHER series transistor is used to replace an original equipment device in an untuned amplifier stage operating at a low signal level such as the untuned RFamplifier (antenna) stage of a radio receiver, or a lowlevel AF amplifier stage, it is generally unnecessary to make any circuit adjustment to assure proper performance of the equipment. However, when a replacement is made in a turned RF amplifier stage, it is always advisable to check the alignment of the associated tuned circuits to assure proper tracking and to achieve the required gain without loss of stability.

(C) When replacements are made in stages operating at relatively high power levels, such as Class A and Class B AF output stages of automobile radio receivers, phonographs and AF-amplifier systems, the transistor bias should be checked and adjusted, if necessary, to protect the ARCHER replacement transistors against excessive dissipation and to minimize distortion. Means for making adjustments are generally provided in the equipment, and the necessary instructions are usually given in the equipment manufacturer's service data.

(D) When installing an ARCHER transistor as a substitute for an original equipment type in an FM tuner, TV tuner, or other circuits operating at frequencies in the VHF or UHF regions, it is extremely important not to change any of the lead lengths or position of the original circuit. Before removing the original transistor, carefully note its position with respect to other circuit components as well as the lengths and placement of the transistor leads, and duplicate these details as closely as possible with the ARCHER replacement transistor. Failure to observe this precaution can result in improper tuning or circuit instability. The same holds true for any replacement of Integrated Circuits, specially in FM radios and TV Receivers. Failure to

observe this precaution can result in damage in the device. Transistor substitution in tuned circuits will often require realignment of the circuit.

SILICON VS SELENIUM RECTIFIERS

Silicon rectifiers are inherently more efficient than selenium or other metallic-oxide type rectifiers. When a silicon rectifier is used to replace a selenium rectifier in the power supply of a typical line-operated radio or TV receiver, the silicon rectifier will frequently deliver higher DC output voltage than the original device.

In some cases, this higher supply voltage may improve the performance of the equipment. However, in many other cases, it may immediately or eventually damage filter capacitors and/or other components which were designed to withstand only the voltage delivered by the original selenium rectifier. To prevent such damage, it is generally advisable to insert a power type resistor in series with the silicon rectifier either on the input side, between the AC supply and the rectifier, or on the output side between the rectifier and the first filter capacitor. The value of this resistor will depend on the required reduction in the DC output voltage and on the DC load current of the equipment. This value may be determined experimentally or calculated from the equation:

$$R = \frac{E}{I}$$

where R is the required resistance in ohms, E the required reduction in DC output voltage in volts and I the DC load current in amperes.

The wattage rating of the resistor should be at least 2 X EI (in no case less than 10 watts).

SOLDERING PRECAUTIONS

Extreme care should always be used in making solder connections to semiconductors. Momentary application of excessive heat, or even prolonged application of a properly heated soldering tool to a semiconductor lead or terminal, can permanently damage the device. Observe the following precautions in soldering a semiconductor lead or terminal:

1. Solder as far as possible from the body of the semiconductor.

2. Never, apply heat or molten solder to a lead or terminal for longer than 10 seconds or at a point closer than 1/16 inch to the body of the device.

3. Use a low voltage iron (30 watts or less) specifically intended for use with transistors or miniature circuit components.

4. Keep the surfaces to be soldered clean and the tip of the soldering tool adequately tinned so that the connection can be made as quickly as possible.

5. Always use a heat sink on the lead when soldering. Gripping the lead or terminal with longnose pliers between the solder connection and case or body allows the pliers to act as a heat sink, conducting heat away from the internal elements of the device.

ABOUT CASE DIMENSIONS

In some instances, the case of an ARCHER Semi-

conductor may be slightly taller or thicker than that of the original device or have a slightly different shape, particularly if the original device is a foreign type not made to U.S.A. EIA (JEDEC) standards. These mechanical differences should not affect the performance of the equipment in which the replacement is made and normally will not prevent or complicate the installation of the ARCHER replacement device.

You should realize that cross-reference substitution listings are created based **on electrical parameters** (not necessarily on mechanical size or type). Thus, when you make substitutions based on our listings, check for physical/mechanical compatibility. If space is limited, it would be a good idea to check physical dimensions as well as electrical specs before making substitution.

GENERAL PRECAUTIONS

ARCHER transistor and ARCHER semiconductors should not be inserted or withdrawn from circuits with the power on, because transient currents may cause permanent damage to the device. In some cases ARCHER semiconductors are in metal cans and thus could possibly become shock hazards if they are allowed to operate at a voltage appreciably above or below ground potential.

For the most effective protection, a power transistor should be operated with an adequate heat sink and with the lowest value of resistance or impedance in the emitter-to-base circuit consistent with driving signal considerations. The transistor should be protected against extremely high collector voltage pulses which may be generated when the device is operated with inductive loads particularly when current transients are present.

When replacing a power transistor or rectifier which is attached to the equipment chassis, or to a special heat sink, observe the following precautions:

A. In the case of oxide coated metal washers or wafers, which are frequently used as electrical insulators between the cases of power transistors and the chassis or heat sink, it is important not to scratch, chip or otherwise damage the oxide surface.

B. When installing an ARCHER power transistor, where a mica or oxide coated metal washer was used to insulate the case of the original device electrically from the case, apply a thin coating of Heat Sink Compound (Radio Shack Number 276-1372) between the washer and the chassis or heat sink.

TESTING A TRANSISTOR

Before replacing a transistor you want to be sure it needs to be replaced. Always check the entire circuitry to be sure the transistor requires replacement.

The best method for checking transistors is to use a good transistor checker (dynamic in-circuit and outof-circuit type). However, a sensitive VOM can give you a good indication of the quality of the device.

I. In-Circuit Testing

A. First, check to see if the emitter-base junction is

forward-biased. An NPN transistor should show the base 0.2 to 0.65 volts positive with respect to the emitter (approximately 0.25 volts for a germanium type and 0.6 volts for silicon). A PNP transistor should show the base 0.2 to 0.65 volts negative with respect to the emitter (0.25 volts for germanium and 0.6 volts for silicon).

B. Check to see if the device is functioning as an amplifier. Short the emitter-base junction to remove forward bias. Voltage at the collector lead should rise to approximately the potential of the collector supply buss line. Any difference is caused by ICES (collector-to-base leakage current). The closer the collector voltage approaches the buss line, the lower ICES is and the better the transistor.

II. Out-of-Circuit Testing

Again, for the best indication of transistor quality, use a good transistor checker. However, an ohmmeter can be used as described here.

Before using the ohmmeter, find out which polarity of the internal ohmmeter battery is connected to which test lead (not all ohmmeters have the + battery polarity connected to the red lead and the - battery polarity connected to the black lead). To determine the polarity of the leads when using the ohmmeter function, use an external voltmeter or study the schematic of your VOM.

Also, remember that in most transistor circuits you are dealing with low voltages and currents (in some cases, very low). Therefore, **NEVER** use RX1 scale (extensive currents can flow through a junction, permanently damaging the transistor). It is best to determine the maximum amount of current available in each resistance range before using an ohmmeter for testing semiconductor junctions.

After you have evaluated your VOM for the above and are sure you will not damage a transistor (with excessive current or voltage in any given ohmmeter range), proceed as follows:

- A. Small Signal PNP Germanium Transistors
 - 1. Connect the positive lead of your ohmmeter to the emitter. Connect the negative lead to the base. You should read 200-500 ohms.
 - 2. Connect the negative lead to the collector. You should read 10K-100K. Shorting collector base, the resistance should decrease.
- B. Small Signal NPN Germanium Transistors **Reverse the polarity of the leads**; the readings should be approximately the same.
- C. Power PNP Germanium Transistors
 - 1. Connect the positive lead to the emitter. Connect the negative lead to the base. The reading should be 35-50 ohms.
 - 2. Connect the negative lead to the collector The reading should be several hundred ohms. Short-ing collector to base, the resistance should decrease.
- D. Power NPN Germanium Transistors
 - **Reverse the polarity of the leads**; the reading should be approximately the same.

- E. Small Signal PNP Silicon Transistors
 - 1. Connect the positive lead to the emitter. Connect the negative lead to the base. The reading should be 1K-3K.
 - 2. Connect the negative lead to the collector. The reading should be very high (may show as an "open").
- F. Small Signal NPN Silicon Transistors **Reverse the polarity of the leads;** the readings should be approximately the same.
- G. Power PNP Silicon Transistors
 - 1. Connect the positive lead to the emitter. Connect the negative lead to the base. The reading should be 200-1K.
 - 2. Connect the negative lead to the collector. The reading should be about 1 megohm or more.
- H. Power NPN Silicon Transistors **Reverse the polarity of the leads;** the readings should be approximately the same.

The resistance readings noted above can only be approximate; as long as you obtain somewhat **proportionate** readings (emitter-base readings as compared to emitter-collector), you can safely assume the transistor is OK.

HANDLING OF INTEGRATED CIRCUITS

Because MOS devices have extremely high input resistance, they are susceptible to damage when exposed to static electrical charges (even electrical charges that normally build up on the human body can cause damage). To avoid possible damage to the devices during handling, testing, or actual operation, the following procedures should be observed:

1. Except when being tested or in actual operation, the leads of devices should be in contact with a conductive material, to avoid build-up of static charge.

2. Soldering iron tips, tools, metal parts of fixtures and handling facilities should be grounded.

3. Transient voltages may cause permanent damage to the device if it is removed or inserted with the power on.

4. Do not apply signals to the input with the power supply off.

5. All unused input leads must be connected to either Vss or VDD (whichever is appropriate for the logic circuit involved).

DIODES AND RECTIFIERS

ZENER DIODES-1 Watt

Catalog Number	Vz Volts ±10%	lz @ mA	Zz @ Iz ohms max	Case Style
276-565	5.1	49	7	DO41
276-561	6.2	41	2	DO41
276-562	9.1	25	7	DO41
276-563	12.0	21	9	DO41
276-564	15.0	17	14	DO41

BRIDGE RECTIFIERS

Catalog Number	PIV (min) V	lf (max) A	Case Style
276-1146	50	4	M532a
276-1151	50	1.4	M548
276-1152	100	1.4	M548
276-1161	50	Moto esta cono	Y1
276-1171	100	4	M532a
276-1173	400	4	M532a
276-1180	50	6	M532a
276-1181	250	6	M532a
276-1185	50	25	niers adding

GENERAL PURPOSE DIODES RATINGS @ 25°C

Ir (max) Vf (max) Catalog PIV (min) If Case @ Vr @ If ν μA Number A Style DO41 50 1.000 10 1.6 276-1101 10 1.6 DO41 276-1102 200 1.000 DO41 1.6 276-1103 400 1.000 10 DO41 276-1104 600 1.000 10 1.6 2.500 200 1.0 A1vm 276-1114 1000 276-1122 75 0.010 250nA 1.0 A1 0.085 276-1123* 60 15 1.0 A1 50 3.000 500 1.2 A3q 276-1141 1.2 3.000 500 A3q 276-1143 200 A3q 400 3.000 500 1.2 276-1144 1.000 0.55 A1 276-1165† 40 5mA

*GERMANIUM

†SCHOTTKY

BIPOLAR TRANSISTORS

Catalog Number	Direct Commercial Equivalent	Mat.	Appli.	Polarity	Power Diss. @25°C Free Air	f _T Typical MHz	V _{CBO} V	V _{CEO} V	V _{EBO} V	l _c Max	l _B Max	h _{FE}	@V _{ce} V	@ I _c mA	I _{CBO} at max V _{CB}	Case Style
276-1604#	2N3906	S	G.P.	PNP	350mW	250	40	40	5	200mA	- <u>-</u> · ·	60	1	0.1		T092
276-1617#	2N2222	S	G.P.	NPN	500mW	250	60	30	5	800mA	_	35	10	0.1	-	T018
276-2009	MPS2222A	S	G.P.	NPN	625mW	300	75	40	6	800mA	-	50	10	1	10nA	T092
276-2016	MPS3904	S	S	NPN	625mW	300	60	40	6	200mA		100-300	10	1	50nA	T092
276-2017	TIP31	S	P	NPN	40W‡	3	40	40	5	ЗА	1A	10-50	4	ЗA	300µA	T0220AB-2
276-2020	TIP3055	S	Р	NPN	90W‡	3	100	70	7	15A	7A	20-70	4	4A	1mA	T0220
276-2023	MPS2907	S	S	PNP	625mW	200	60	40	5	600mA	-	50	10	1	20nA	T092
276-2027	MJE34	S	Р	PNP	90W‡	3	40	40	5	10A	3A	20-100	4	ЗA	220µA	T0220
276-2030	2N3053	S	P	NPN	5W	100	60	40	5	700mA	-	50-250	10	150	-	T039
276-2041	2N3055	S	P	NPN	115W‡	2.5	100	60	7	15A	7A	20-70	4	1A	- 60.	T03
276-2043	MJ2955	S	Р	PNP	150W‡	4	100	60	7	15A	7A	70	10	0.5	0.7mA	T03
276-2055	2SC1308	S	SW	NPN	50W‡	<u> </u>	1500	400	6	7A	0.8A	3	2	4A	100µA	тоз
276-2058	2N4401	S	G.P.	NPN	625mW	250 min.	40	60	6	600mA		500	10	1	0.1µA	T092
276-2068	TIP120	S	P*	NPN	65W‡	0.1	60	60	5	5A	120mA	2500	3	500	0.2mA	T0220AB-2

NOTE: All ratings given are for 25°C except where otherwise noted. MATERIAL: S-Silicon; G-Germanium **APPLICATION:**

S-Switch G.P.-General Purpose P-Power amp/switch RF/IF-RF/IF frequency

SIGNAL

SOURCE

*-High Gain Darlington UHF—Ultrahigh frequency

±With heat sink

#-Archer-Pack

OUTPUT

RF

RL LOAD

LL-Low Level SW-TV Sweep

USEFUL INFORMATION

Parameters of Common-Base Circuit

 $Z_{in} = r_{tr}$

 $A_i = \alpha = \frac{\beta}{1+\beta}$

 $A_v \approx \frac{Z_L}{r_{tr}} = g_m Z_L$

Input Impedance

Load Impedance

Current Gain

Voltage Gain

Parameters of Common-Collector Circuit

```
Input Impedance
                                                                        Z_{\rm in} = (\beta + 1)Z_{\rm L}
                                                                        where,
Z_L = R_L in parallel with input
                                                                        Z<sub>L</sub> is R<sub>L</sub> in parallel with R<sub>E</sub>.
impedance of following stage.
                                                                                     Rs
                                          Output Impedance
                                                                        Z_{out} =
                                                                                    \beta + 1
(In practice, a is 0.95 to
                                                                        where,
                                                                        R<sub>s</sub> is the output imped
 0.995, or approximately 1.)
                                                                        ance of the signal source.
                                          Current Amplification
                                                                      A_i \approx \beta
                                          Voltage Amplification A_v = Less than unity
```


Parameters of Common-Emitter Circuit

Input Impedance	$Z_{in} = h_{fe}r_{tr}$
Load Impedance	$Z_L = R_L$ in parallel with input impedance of next stage.
Current Gain	$A_i = \frac{\Delta I_C}{\Delta I_B} = h_{fe}$
	where,
	$h_{fe} = \beta = \frac{l_c}{l_b} = \frac{\alpha}{1 - \alpha}$
Voltage Gain	$A_v = \frac{\Delta V_C}{M} = \frac{Z_L}{M} = g_m Z_L$

Power Gain

=g_mZ_L ΔVB

 $A_{p} = \frac{V_{out} I_{out}}{V_{in} I_{in}} = \beta \frac{Z_{L}}{r_{tr}}$

6

SPECIAL TRANSISTOR (FET)

MPF102

276-2062

SILICON N-CHANNEL JUNCTION FIELD EFFECT TRANSISTOR

GENERAL DESCRIPTION

The MPF102 is designed for small signal applications. These include VHF amplifiers and mixers.

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

Drain-Source Voltage25	V
Drain-Gate Voltage25	V
Gate-Source Voltage25	V
Gate Current	A
Total Device Dissipation	N
Operating Junction Temperature125°	C
Storage Temperature Range 65 to + 150°	C

PIN CONNECTION

BOTTOM VIEW

DRAIN SOURCE GATE Drain and source may be interchanged

N-CHANNEL MOSFET TRANSISTOR

1RF511 276-2072

GENERAL DESCRIPTION

The efficient geometry and unique processing of the HEXFET design achieve very low on-state resistance combined with high transconductance and great device ruggedness.

This transistor also features all of the well established advantages of MOSFETs such as voltage control, freedom from second breakdown, very fast switching, ease of paralleling, and temperature stability of the electrical parameters.

FEATURES

- Fast switching
- Low drive current
- Ease of paralleling
- No second breakdown
- Excellent temperature stability

APPLICATIONS

- Switching power supplies
- Motor controls
- Inverters
- Choppers
- Audio amplifiers
- High energy pulse circuits

ABSOLUTE MAXIMUM RATINGS

Drain-Source Voltage, V _{DS}
Drain-Gate Voltage ($R_{GS} = 1 M\Omega$), V_{DGR}
Gate-Source Voltage, V _{GS} ±20V
Continuous Drain Current, $I_D @ T_C \cong 86 \degree C \dots 3A$
Pulsed Drain Current, I _{DM} 8A
Maximum Power Dissipation, P _D 20W
Linear Derating Factor0.16W/K
Inductive Current, Clamped, I_{LM} (See Fig. 1) L = 100 μ H8A
Operating Temperature Range, T ₁
Storage Temperature Range, T _{stg} 55 to +150°C

PIN CONNECTION

SPECIAL TRANSISTORS (FET)

IRF511 276-2072 **TEST CIRCUITS** E1 9 VDS ADJUST RL TO OBTAIN SPECIFIED ID RL L PULSE 000 VARY tp TO OBTAIN D.U.T. 50Ω 山田 TO SCOPE E1 3 0.5BVDSS VGS 100 OUT **50**Ω (L) 0.75BVDSS 0.1Ω HIGH FREQ SHUNT ID . Vc 3 1L 0.05Ω Figure 1—Clamped Inductive Test Circuit and Waveform Figure 2—Switching Time Test Circuit

TYPICAL CHARACTERISTICS

Output Characteristics

vs Temperature

Transfer Characteristics

vs Drain Current

Saturation Characteristics

Normalized On-Resistance vs Temperature

SPECIAL TRANSISTORS (FET)

SILICON N-CHANNEL JUNCTION FIELD-EFFECT TRANSISTOR

GENERAL DESCRIPTION

The 2N3819 is designed for general purpose small-signal applications. It features low capacitance between drain and gate terminals and an excellent highfrequency figure of merit. It achieves a low noise figure and good power gain with low crossmodulation and intermodulation.

ABSOLUTE MAXIMUM RATING $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Gate-Source Breakdown Voltage BV _{GSS} 40 V
Zero Gate Voltage Drain Current IDSS 20 mA
Forward Transconductance g _{fs}
Reverse Gate Leakage I _{CSS} – 100 pA
"ON" Resistance r _{DS}
Pinch Off Voltage V _{CS(OFF)} 6.0 V
Output Conductance g _{os}
Feedback Capacitance C _{rss} 0.9 pF
Input Capacitance C _{iss}
Power Gain G _{PS} 12 dB
Power Dissipation

TYPICAL CHARACTERISTICS

Forward Transfer Admittance vs Frequency

Output Conductance vs Frequency

0.1

100

vs Frequency

COMMON SOURCE

200

500

1000

Input Admittance vs Frequency

FREQUENCY f - MHz

C 0 C SOURCE GATE DRAI T092

PIN CONNECTION

BOTTOM VIEW

2N3819 276-2035

9

SPECIAL TRANSISTORS (FET)

N-CHANNEL TMOS FET

GENERAL DESCRIPTION

This TMOS FET is designed for high-voltage, high-speed switching applications such as line drivers, relay drivers, CMOS logic, microprocessor or TTLto-high voltage interface and high voltage display drivers.

FEATURES

- Fast Switching Speed—t_{on} = t_{off} = 6.0 ns Typ
 Low On-Resistance—5.0 Ohms Max
- Low Drive Requirement, $V_{GS(th)} = 3.0 V Max$
- Inherent Current Sharing Capability Permits Easy Paralleling of Many Devices

ABSOLUTE MAXIMUM RATINGS

Drain-Source Voltage (V _{DSS})	
Gate-Source Voltage (V _{GS}) ± 20 V	r
Drain Current—Continuous (1) (I _D)0.5 A	1
Total Power Dissipation @ $T_C = 25^{\circ}C(P_D)$ 0.83 W	I
Operating and Storage Temperature Range 55°C to + 150°C	:
(1) The Power Dissipation of the package may result in a lower continuous drain current.	

TYPICAL APPLICATIONS

2.0

VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS)

 $V_{\rm GS} = 10$ V

-9.0 V-

8.0 V

7.0 V

6.0 V

5.0 V

4.0 V

4.0

3.0

2.0 (S 1.6 ENT 1.2

1.0

Switching Waveforms

PIN CONNECTION

PIN 1. DRAIN 2. GATE 3. SOURCE

Capacitance Versus Drain-to- Source Voltage

DD

DRAIN 0.8

(wo)q_ 0.4

SPECIAL PURPOSE DEVICES (VARISTOR)

TRANSIENT/SURGE ABSORBER ERZ-C20DK201U

GENERAL DESCRIPTION

ZNR varistors are zinc oxide resistors whose resistance changes as a function of the applied voltage. The ZNR has a bilateral and symmetrical V-I characteristic curve and can therefore be used in circuits in place of back-to-back zener diodes. This gives your circuit clamping protection in either direction. The ZNR provides a highly reliable and economical way to protect against repeated high voltage transients and surges such as those produced by lightning, switching surges and noise spikes.

FEATURES

- Excellent clamping voltage characteristic and fast response time (< 50 nsec.) when subjected to impulse surges. Eliminates the discharge lag that is indicative of gap-type arrestors.
- Bilateral and symmetrical V-I characteristic curve. The ZNR can, therefore, be used both in AC and in DC circuits, for protection of either positive or negative transients.

ABSOLUTE MAXIMUM RATING

Varistor Voltage (V-I @ 1mA DD) (185V 225V)	200V
Applied Voltage AC _{RMS})	130V
(DC)	170V
Clamping Voltage @ Test Current (8 \times 20 μ sec) V _C (V)	340V
IP (A) (276-568)	100A
IP (A) (276-570)	.50A
Peak Pulse Current (8 × 20 μs) 1 Time (276-568)6	500A
(276-570)	500A
Energy (J) (276-568)	70J
(276-570)	35J
Power (276-568)	. 1W
(276-570)	0.60W
Capacitance (PF @ 1kHz) (276-568)	DOOPF
(276-570)	OOPF
Operating Ambient Temperature40° +	85°C
Storage Temperature40° +1	25°C

TYPICAL APPLICATIONS

Single Phase Line Surge

276-568 ERZ-C14DK201U 276-570

V-I Characteristic Curve

Clamping Voltage Characteristics

11

SPECIAL PURPOSE DEVICES (SCR) (TRIAC)

GENERAL DESCRIPTION

- Thyristors and their trigger devices can take numerous forms, but they share these characteristics:
 - They are "open circuits." capable of withstanding rated voltage until triggered.
 - They become low-impedance current paths when triggered, and remain so, even after the trigger source is removed, until current through that path stops, or is reduced below a minimum "holding" level.

SCRs

Silicon-Controlled Rectifiers (SCRs) are Thyristors intended to switch load currents in one direction only. making them useful for DC and half-wave AC applications as well as full-wave applications. in which bidirectional current is routed in one direction through the SCR via a bridge rectifier.

TRIACs

Triacs are bidirectional Thyristors. in which a single trigger source turns the device on for load current in either direction. Because they do not require a bridge rectifier in order to handle full-wave AC. Triacs are useful in AC power applications that require full source power control capability to be applied to the load.

IGT

(max)

mA

50

VGT

(max) V

2.5

Case

Style

MU27

Catalog Number	lmax A	Vmax V	I _{GT} (max) mA	V _{GT} (max) V	Case Style	Catalog Number	lmax A	Vmax V
276-1067	6	200	25	1.5	MU27	276-1000	6	400
276-1020	6	400	25	1.5	MU27			

OPTOELECTRONIC INDEX BY FUNCTION

FUNCTION	CATALOG NO.	PAGE NO.
DISPLAY	276-053 276-064 276-075 276-081	
DRIVER EMITTER	276-134 176-142 276-143	
LED (BLINKING)	276-030	
LED INDICATORS (CHART)	276-021 276-021 276-022 276-025 276-026 276-033 276-037 276-041 276-065 276-066A 276-068 276-068 276-069 276-088	13 13 13 13 13 13 13 13 13 13 13 13 13 1
LED (TRI-COLOR)	276-035	
PHOTOCELL	276-116	
PHOTOTRANSISTOR SOLAR CELL	276-145 276-124	

FIGURE 10 Super high brightness LED with holder

OPTOELECTRONIC (LED) LED INDICATORS

Catalog Number	Direct Commercial Equivalent	Peak Wave Length nM	Color	Forward Voltage V _F (V)	Reverse Voltage V _R (V)	Max DC Forward Current I _F (MA)	Max Pwr Diss P _D (MW)	Fig. No.
276-018	PR5534S	700	RED	2.5	4	100	75	4
276-021	SLP-236B	565	YELLOW	2.8	3	30	70	5
276-022	SLP-236B	565	GREEN	2.8	3	30	70	5
276-025	R9-56	-	RED/GREEN	2.0	3.0	10		7
276-026	-	650	RED		3	50	100	2
276-033	TLR-147	700	RED	2.1	4	35	100	1
276-037	SLP-235B	565	GREEN	2.8	3	30	70	4
276-041	-	700	RED	1.75	3	70	140	3
276-065	369HHD	697	RED	1.8	5	20	75	8
276-066A	SLA-591LT3	660	RED	2.5 (@20 MA)	4	50	100	9
276-068	-	700	RED	1.9		30	ne - bana	6
276-069	-	560	GREEN	2.1		30		6
276-088	SLP-888A	660	RED	2.2 (@2 MA)	3	20	70	10

FIGURE 1

Miniature LED with diffused lens. This LED is compatible with most TTL and transistor circuits. It features a Fresnel lens design.

FIGURE 2

This LED features a frosted diffused lens in a plastic encapsulant. When the device is on, it appears as a large, soft light source, making it ideally suited for front panel applications.

FIGURE 3

This device is a jumbo LED with a diffused lens. It can be used in applications such as pilot and indicator lamps.

FIGURE 4

Subminiature LED with diffused lens. This device has solid state reliability and is compatible with most TTL and transistor circuits.

FIGURE 5 This is a frame type solid state LED with a diffused lens.

FIGURE 6 This is a subminiature LED indicator with polished chrome reflective holder.

FIGURE 7

This is a three terminal LED. The light color radiates "red" when terminals 2 and 3 are used. Green light radiates when terminals 1 and 2 are used.

FIGURE 8

This is a jumbo red LED. It consists of two LED elements connected cathode to cathode in a 10mm diameter housing.

FIGURE 9

This is a high-brightness red LED. It is many times brighter than ordinary LEDs, yet still runs cool.

OPTOELECTRONIC (EMITTER)

P-N GALLIUM ALUMINUM ARSENIDE **INFRARED- EMITTING DIODE**

GENERAL DESCRIPTION

This is a P-N Gallium Aluminum Arsenide Infrared-Emitting diode designed to emit near infrared radiation when forward biased. Its output is spectrally compatible with silicon sensors and has a high power output with a 20° beam angle.

ABSOLUTE MAXIMUM RATINGS

Forward Voltage (Static) (VF)1.75 V
Reverse Voltage (VA)
Continuous Forward Current at (Or Below)
25°C Free-Air Temperature
Peak Forward Current (See Note 1)2 A
Reverse Current ($V_R = 3 V$)
Radiant Power Output (Po) (IF = 20 mA)1.5 MW
Emission Beam Angle Between
Half-Intensity Points
Wave Length at Peak Emission (IF = 20 mA)
Operating Temperature Range40°C To 80°C
Storage Temperature Range40°C to 100°C
NOTE: 1. This value applies for $t_{w} \leq 10 \ \mu s$, $f \leq 1 \ \text{kHz}$. See Figure 1.

FEATURES

High power output With a 20° beam angle
Output spectrally compatible with silicon sensors

TYPICAL CHARACTERISTICS

VS **Forward Current**

PIN CONNECTION

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0. 20 θ-ANGULAR DISPLACEMENT **Relative Radiant Intensity**

RADIANT INTENSITY

RELATIVE

vs Angular Displacement

14

OPTOELECTRONIC (DISPLAY) (LED)

B1001R 276-081

HIGH EFFICIENCY RED BAR GRAPH DISPLAY

GENERAL DESCRIPTION

The B1001R is a 10 segment bar graph display with separate anodes and cathodes for each light segment. The packages are end stackable.

FEATURES

- Large segments, closely spaced
- End stackable
- Fast switching, excellent for multiplexing
- Low power consumption
- Directly compatible with ICs
- Wide viewing angle

ABSOLUTE MAXIMUM RATINGS

(25°C Free Air Temperature Unless Otherwise Specified)

Power dissipation	nvv
Continuous forward current	
Total	mA
Per segment	mA
Reverse voltage	
Per segment	0 V
Storage and operating temperature)°C

PIN CONNECTION

ELECTRO-OPTICAL CHARACTERISTICS

Forward Voltage	 	 		 	 	 							. :	1.6	1	1
Peak emission wavelength.	 	 	 	 	 	 							65	5r	ın	n

BLINKING LED

GENERAL DESCRIPTION

The F336GD is a solid state LED with a green diffused plastic lens. The F336HD is a solid state LED with a red diffused plastic lens. A built-in IC flashes the LEDs on/off and can be driven directly by standard TTL and CMOS circuits, eliminating the need for external switching circuitry.

FEATURES

- Built-in IC chip, flashes LED on and off to attract attention
- Pulse rate 1.0HZ
- T1 3/4 size
- Larger full flood radiating area
- 1-inch leads
- 1.2mcd @ $V_F = 3.0V$
- IC compatible

ABSOLUTE MAXIMUM RATINGS

Operating Voltage	
Peak Inverse Voltage	0.4 V
Operating Temperature	0°C to 70°C
Storage Temperature	20°C to + 85°C
Lead Soldering Temperature (1/16 inch from case)	5 sec. @ 260°C

ELECTRO-OPTICAL CHARACTERISTICS

Luminous Intensity	1.2 mcd
Emission Peak Wavelength (F336GD)	565nm
(F336HD)	597nm
Spectral Line Halfwidth (F336GD)	30nm
(F336HD)	90nm
Peak Current (50% Duty Cycle)	3.5 MA
Pulse Rate	2.0 HZ

PIN CONNECTION

OPTOELECTRONIC (DRIVER)

OPTOCOUPLER TRIAC DRIVER

GENERAL DESCRIPTION

This device consists of a gallium-arsenide infrared emitting diode. optically coupled to a silicon bilateral switch and is designed for applications requiring isolated triac triggering, low-current isolated ac switching, high electrical isolation (to 7500 V peak), high detector standoff voltage, small size, and low cost.

INFRARED EMITTING DIODE MAXIMUM RATINGS

Reverse Voltage	3.0 volts
Forward Current-Continuous	50 mA
Total Power Dissipation @ TA = 25°C	100 mW

OUTPUT DRIVER MAXIMUM RATINGS

Off-State Output Terminal Voltage	. 250 Volts
On-State RMS Current TA = 25°C	100 mA
(Full Cycle, 50 to 60 Hz TA = 70° C)	50 mA
Peak Nonrepetive Surge Current	1.2 A
(PW = 10ms, DC = 10%)	
Total Power Dissipation @ TA = 25°C	300 mW
Derate above 25°C	4.0 mW/°C

TOTAL DEVICE MAXIMUM RATINGS

Isolation Surge Voltage (1s)
(Peak ac Voltage, 60 Hz. 5 Second Duration)
Total Power Dissipation
Junction Temperature Range
Ambient Operating Temperature Range40 to +70°C
Storage Temperature Range40 to +150°C
Soldering Temperature (10s) 260°C

APPLICATIONS

Resistive Load

Inductive Load with Non-Sensitive Gate Triac (15mA < I_{GT} < 50mA)

PIN CONNECTION

TYPICAL CHARACTERISTICS

On-State Current vs On-State Voltage

OPTOELECTRONIC (DISPLAY)

PIN CONNECTION

COMMON CATHODE DISPLAY

MAN74 276-075

GENERAL DESCRIPTION

This is a red .3 inch common cathode RHDP Display device with a brightness or luminous intensity (Per Seq. MIN) of 125 μ cd @ 10mA.

APPLICATIONS

- Instruments
- Test Equipment
- Office Machines
- Computers
- Automobiles
- Clocks/Radios
- Communication Equipment
- Calculators
- CB Radios

ABSOLUTE MAXIMUM RATINGS

Forward Voltage	2 V
Forward Current	.20 mA
Power (P _p)	700 mW
Wave Length	660 nM
Brightness/Luminous Intensity @ 10mA	125 µcd

BIG HI-EFFICIENCY RED LED

GENERAL DESCRIPTION

The 276-064 is a 0.79" diameter hi-efficiency Red LED. This device is ideal for a variety of applications where a large bright source is required.

ABSOLUTE MAXIMUM RATINGS

Reverse Voltage	5 V
Reverse Current (Vr = 5V)	10μA
Operating Temperature Range	40°C To 85°C
Storage Temperature Range	40°C To 100°C
Lead Soldering Temperature	260°C For 5 Seconds
[1.6mm (0.063 inch) From Body]	
Spectral Line Half-Width (Aλ)	45mm
Power Dissipation (Pd)	100mW
Peak Forward Current (duty 1/10. 1KHz) lf (Peak)	160mA
Recommend Operating Current lf (Rec)	20mA
Average Luminous Intensity 1.2 (lf = 10mA) lv	25µcd
Luminous Intensity Matching Ratio lv-m	2:1
Forward Voltage (lf = 20mA) Vf	2.8 V

FEATURES

- 0.79" (20.0mm) big LED. Graphic stacking allowable.
- Suitable for multiplex operation.
- High luminous intensity.Solid state reliability.

OPTOELECTRONIC (DISPLAY) (PHOTOCELL)

276-053 0.3" SOLID STATE SEVEN SEGMENT DISPLAY

GENERAL DESCRIPTION

The 276-053 is a common anode LED numeric display. The large 0.3" high character size generates a bright, continuously uniform 7 segment display. Designed for viewing distances of up to 10 feet, this single digit display has been human engineered to provide a high contrast ratio and wide viewing angle.

FEATURES

- Fits 14 pin DIP socket
- Excellent character appearance-continuous uniform segments; wide viewing angle; high contrast
- IC compatible 1.6 V per segment
- Standard 0.3" DIP lead configuration; PC board or standard socket mountable
- Both left and right decimal points

APPLICATIONS

- Electronic calculators
- Frequency counters

• TVs

Digital clocks

Radios

RADIANT CHARACTERISTICS (IF=20mA) T_A=25°C

Luminous Intensity	1	 	 	 				 	 		 			 	 250	mco	t
Wavelength (Peak)		 	 	 		 	 	 		 		 	 		 655	nN	1

ABSOLUTE MAXIMUM RATINGS

Power Dissipation $T_A = 25^{\circ}C400 \text{ mW}$	
Average Forward Current/Segment or Decimal Pt. T _A =25°C 25 mA	
Peak Forward Current/Segment or Decimal Pt. T _A =12°C	
(Pulse Duration 500µs) 150 mA	
Reverse Voltage per Segment or Decimal Pt 6 V	
Operating Temperature Range – 20 to +85°C	
Storage Temperature Range20 to +85°C	
Max Solder Temperature 1/16" Below Seating Plane (t ≤ 5 sec.)	

276-116 CADMIUM SULPHIDE PHOTOCELL

GENERAL DESCRIPTION

A cadmium sulphide photo cell is a light variable resistor which is most sensitive in the green to yellow portion of the light spectrum. With it you can use light to control many electronic devices. Max. resistance .5 meg., min. resistance 100 ohms, max. voltage 170 V, max. wattage .2 watts, rugged epoxy case.

APPLICATIONS

- Night light
- Light control
- Burglar alarm
- Relay

SPECIFICATIONS

•	ShapeRound
•	Sensitive Area
•	Weight 1.56 gms
•	Resistance at 1 Ftc (2870°K)
•	Typical Resistance 100 Ftc (2870°K) 100 Ohms
•	Resistance Dark Minimum (1 Minute) 0.5 Megohms

ABSOLUTE MAXIMUM RATINGS

Max. Applied Voltage (ac or dc)	170	V peak
Max. Power Dissipation at 25°C		2 watts
Power Derating Linearly	to O	@ 75°C
Operating Temp. Range4	to to	+75°C

CONNECTIONS

COMMON ANODE

FUNCTION

PIN

123456

OPTOELECTRONIC (LED) (PHOTOTRANSISTOR)

TRI-COLOR LIGHT EMITTING DIODE

GENERAL DESCRIPTION

The XC-5491 tri-state LED provides red, green, and yellow emission in the same package. This LED is a popular .200 diameter, two-leaded package containing a red and green LED chip in inverse parallel. By reversing the polarity of the applied current, the LED will emit red or green light while an AC voltage results in yellow light. The chips used in the XC-5491 are brightness matched so that the light output is uniform. This eliminates the necessity for the special drive circuits previously required with tri-state lamps.

These lamps provide the designer with the capability of efficiently displaying three functions with one indicator. This reduces the number of front panel indicators and simplifies design.

FEATURES

- 3 States—red. green. and yellow
- Equal brightness in all three colors
- Popular T 1³/₄ size package
- Wire wrappable leads

ABSOLUTE MAXIMUM RATINGS

Forward Current	A
Peak Reverse Voltage	V
Power Dissipation	W
Operating Temperature Range55 to +85°	C
Lead Solder Temperature	C

INFRARED PHOTOTRANSISTOR

GENERAL DESCRIPTION

The TIL414 is an NPN silicon phototransistor in A T-1 3/4 style case. It provides high speed and high photosensitivity, suitable for IR switching applications.

ABSOLUTE MAXIMUM RATINGS

ollector-Emitter Voltage 50	V
mitter-Collector Voltage7	V
ower Dissipation	W
perating Temperature	°C

ELECTRICAL CHARACTERISTICS (Typical)

Dark Current ($V_{CE} = 30 \text{ V}$)	. 25 nA
Light Current ($V_{CE} = 5 V \bullet E_e = 20 mW/cm^2$)	7 mA
Collector-Emitter Saturation	0.4 V
Rise Time	8 µs
Fall Time	6 µs

PIN CONNECTION

TIL414 276-145

TYPICAL CHARACTERISTICS

OPTOELECTRONIC (EMITTER) (SOLAR CELL)

276-142 INFRARED EMITTER AND DETECTOR

GENERAL DESCRIPTION

The 276-142 is a pair consisting of an infrared photodetector and an infraredemitting diode. The diode is capable of emitting radiant energy in the infrared region of the spectrum.

FEATURES

- Spectrally and mechanically matched
- High power efficiency . . . typically 5 percent at 25°C

ABSOLUTE MAXIMUM RATINGS

Photodetector

Collector-Emitter Voltage	20V
Collector Current	25mA
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature	50mW
Operating Free-Air Temperature Range40 to	+80°C
Storage Temperature Range40 to	+85°C
Lead Temperature 1/16 Inch from Case for 5 Seconds	240°C

Infrared-Emitting Diode

Reverse Voltage	2V
Continuous Forward Current	10mA
Radiant Power Output0	5mW
Wavelength at Peak Emission	15mm

276-124 2.5×5cm SILICON SOLAR CELL

GENERAL DESCRIPTION

A solar cell is a silicon semiconductor device which converts light energy directly to electricity. A typical 2.5×5 cm cell will produce 0.42 volt and up to .18 amp of usable current. The power generated is affected by the load resistance (circuit powered by cell) strength of sunlight and temperature.

Be extremely careful when soldering leads. Use only a very fine wire (#26 or thinner) and use a small soldering iron (less than 50 watts). Solar cells may be connected in series to produce more voltage and in parallel for more current.

ABSOLUTE MAXIMUM RATINGS

Voltage	(Open Circui	t):						0.55V
Current	(short circuit):						0.2A
(Test con	nditions: Full	sunlight	at noo	n on a	clear	day at	25°C (76°	F))

TYPICAL CHARACTERISTICS

Current vs Voltage

CONNECTIONS

FRONT VIEW

4001 276-2401

QUAD TWO-INPUT NOR GATE

GENERAL DESCRIPTION

The 4001 quad 2-Input NOR gate is constructed with MOS P-channel and Nchannel enhancement mode devices in a single monolithic structure. These complementary MOS logic gates find primary use where low power dissipation and/ or high noise immunity is desired.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that V_{in} and V_{out} be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}).

FEATURES

- Quiescent current = 0.5 nA typ/pkg @ 5 Vdc
 Noise immunity = 45% of V_{DD} typical
- . Diode protection on all inputs
- . Supply voltage range = 3.0 Vdc to 16 Vdc
- . Single supply operation-positive or negative
- . High fanout > 50
- Input impedance = 10^{12} ohms typical
- Logic swing independent of fanout

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to V_{SS})

Storage Temperature Range.....-65 to +150°C

SWITCH TIME TEST CIRCUIT

TYPICAL APPLICATIONS

Gated Tone Source

SYNC TIMING WAVEFORMS

LED flashes 1-2 times/second

LED Flasher

4011 276-2411

QUAD TWO-INPUT NAND GATE

GENERAL DESCRIPTION

The 4011 is constructed with P and N channel enhancement mode devices in a single monolithic structure (Complementary MOS). Their primary use is where low power dissipation and/or high noise immunity is desired. This device contains circuitry to protect the inputs against damage due to high

static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that V_{in} and

 V_{out} be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$ Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}).

FEATURES

- Quiescent current = 0.5 nA typ/pkg @ 5 Vdc
 Noise immunity = 45% of V_{DD} typical
 Supply voltage range = 3.0 Vdc to 16 Vdc

- Double diode protection on all inputs

ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to V_{ss})

DC Supply -0.5 to $+16$ Vdc	
Input voltage, All Inputs = 0.5 to Vpp + 0.5 Vdc	
DC Current Drain per Pin 10 mAdc	
Operating Temperature Range	
Storage Temperature Range	

SWITCH TIME TEST CIRCUIT

SYNC TIMING WAVEFORMS

Display Flasher

Special Effects

4013 276-2413

DUAL TYPE D FLIP-FLOP

GENERAL DESCRIPTION

The 4013 dual type D flip-flop is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. Each flip-flop has independent Data, (D), Direct Set, (S), Direct Reset, (R), and Clock (C) inputs and complementary outputs (Q and \overline{Q}). These devices may be used as shift register elements or as type T flip-flops for counter and toggle applications.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that V_{in} and V_{out} be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g.,

either V_{SS} or V_{DD}).

FEATURES

- Static operation
- Quiescent current = 2.0 nA/package typical @ 5 Vdc Noise immunity = 45% of V_{DD} typical .
- .
- . Diode protection on all inputs
- . Supply voltage range = 3.0 Vdc to 16 Vdc
- Single supply operation .
- Toggle rate = 4 MHz typical @ 5 Vdc
- Logic edge-clocked flip-flop design-logic state is retained indefinitely with clock level either high or low; information is transferred to the output only on the positive-going edge of the clock pulse.
- Capable of driving two-low-power TTL loads, one low-power schottky TTL load or two HTL loads over the rated temperature range.

ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to V_{SS})

DC Current Drain per Pin 10 mAdc

PIN CONNECTION

TRUTH TABLE

INPUTS			OUTPUTS		
Clock [†]	Data	Reset	Set	Q	Q
_	L	L	L	L	H
-	H	L	L	H	L
	X	L	L	No Ch	lange
Х	X	H	L	L	H
X	X	L	Н	H	L
Х	X	H	Н	H	H
X = Don't	Care	H =	High	Level	
L = Low I	Level	† =	Level	Change	

SYNC TIMING WAVEFORMS

DECADE COUNTER/DIVIDER

GENERAL DESCRIPTION

The 4017 is a five-stage Johnson decade counter with built-in code converter. High-speed operation and spike-free outputs are obtained by use of a Johnson decade counter design. The ten decoded outputs are normally low, and go high only at their appropriate decimal time period. The output changes occur on the positive-going edge of the clock pulse. This part can be used in frequency division applications as well as decade counter or decimal decode display applications.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that V_{in} and V_{out} be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}.

FEATURES

- Fully static operation
- DC clock input circuit allows slow rise times

- Carry out output for cascading
 12 MHz (typical) operation @ V_{DD} = 10 Vdc
 Quiescent current = 5.0 nA/package typical @ 5 Vdc
- Supply voltage range = 3.0 Vdc to 16 Vdc
- Capable of driving two low-power TTL loads, one low-power schottky TTL load or two HTL loads over the rated temperature range

ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to V_{SS})

DC Supply Voltage	C
Input Voltage, All Inputs0.5 to V _{DD} +0.5 Vd	c
DC Current Drain per Pin 10 mAd	lc
Operating Temperature Range40 to +85°	С
Storage Temperature Range65 to +150°	С

TYPICAL APPLICATIONS

Count to N and Halt

PIN CONNECTION

TRUTH TABLE (Positive Logic)

Clock	Clock Enable	Reset	Decode Output = n
L	X	L	n
X	Н	L	n
X	X	Н	OL
	L	L	n + 1
~	X	L	n
Х		L	n
1	~	L	n + 1

X = Don't Care If n < 5 Carry = "H",Otherwise = "L'

Count to N and Recycle

INVERTING HEX BUFFER

4049 276-2449

GENERAL DESCRIPTION

The 4049 hex inverter/buffer is constructed with MOS P-channel and Nchannel enhancement mode devices in a single monolithic structure. These complementary MOS devices find primary use where low power dissipation and/or high noise immunity is desired. These devices provide logic-level conversion using only one supply voltage, V_{CC} . The input-signal high level (V_{IH}) can exceed the V_{CC} supply voltage for logic-level conversions. Two TTL/DTL loads can be driven when the devices are used as CMOS-to-TTL/DTL converters (V_{CC} = 5.0 V, V_{OL} \leq 0.4 V, I_{OL} \geq 3.2 mA). Note that pin 16 is not connected internally on this device; consequently connections to this terminal will not affect circuit operation.

FEATURES

- High source and sink currents
- High-to-low level converter
- Quiescent current = 2.0 nA/package typical @ 5 Vdc
- Supply voltage range = 3.0 Vdc to 16 Vdc

ABSOLUTE MAXIMUM RATINGS (Voltages referenced to V_{SS}, Pin 8)

DC Supply Voltage	0.5 to +16 Vdc
Input Voltage, All Inputs	-0.5 to V _{DD} $+0.5$ Vdc
DC Current Drain per Input Pin	10 mAdc
DC Current Drain per Output Pin	45 mAdc
Operating Temperature Range	40 to +85°C
Storage Temperature Range	65 to +150°C

- 10 CURRENT

~ 20

- 40

SOURCE - 30

TUTPUT

HOH,

TYPICAL CHARACTERISTICS

Output Voltage vs Input Voltage

Drain-To-Source Voltage

= V_{OH} - V_{DD}

GS = 5V

MAXIMUN

Output Sink Current vs Drain-To-Source Voltage

1,2,3 = 1/2 4049 Note that the inverters are used in a LINEAR mode. Gain = R2/R1

Linear IOX Amplifier

TYPICAL APPLICATIONS

1,2 = 1/3 4049 Pulse Rate = 1/1.4R1C1

Clock Pulse Generator

25

PIN CONNECTIONS

4066 276-2466

QUAD BILATERAL SWITCH

GENERAL DESCRIPTION

The 4066 consists of four independent switches capable of controlling either digital or analog signals. This Quad Bilateral Switch is useful in signal gating. chopper, modulator, demodulator, and CMOS logic implementation.

This device contains circuitry to protect the inputs against damage due to high static voltages or electrical fields; however, it is advised that normal precautions be taken to avoid applications of any voltage higher than maximum rated voltages to this high impedance circuit.

For proper operation it is recommended that V_{IN} and V_{OUT} be constrained to the range $V_{SS} \leq (V_{IN} \text{ or } V_{OUT}) \leq V_{DD}$. Unused inputs must always be tied to the appropriate logic voltage level (e.g.,

either V_{SS} or V_{DD}).

FEATURES

- Wide supply voltage range-3V to 15V
- High noise immunity -0.45 V_{DD} typ
- Wide range of digital and analog switching ±7.5 VPEAK
- . "ON" resistance for 15V operation -80Ω typ
- Matched "ON" resistance over 15V signal input $-\Delta R_{ON} = 5\Omega$ typ
- "ON" resistance flat over peak-to-peak signal range
- High "ON"/"OFF" output voltage ratio-65 dB typ
- High degree of linearity –<0.4% distortion typ Extremely low "OFF" switch leakage −0.1 nA typ .
- .
- Extremely high control input impedance $-10^{12}\Omega$ typ
- Low crosstalk between switches -- 50 dB typ
- Frequency response, switch "ON" 40 MHz typ

APPLICATIONS

- Analog signal switching/multiplexing Signal gating Squelch control
 - Chopper
 - Modulator/Demodulator
 - Commutating switch
- Digital signal switching/multiplexing
- CMOS logic implementation
- Analog-to-digital/digital-to-analog conversion
- Digital control of frequency. impedance. phase. and analog-signal gain

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	$\dots \dots -0.5V$ to $+18V$
Input Voltage	$\ldots \ldots -0.5$ to V _{DD} +0.5V
Package Dissipation	
Operating Temperature Range	40 to +85°C
Storage Temperature Range	65 to +150°C
Lead Temperature (Soldering, 10 seconds)	

Bandwidth and Feedthrough Attenuation

PIN CONNECTION

TRUTH TABLES

CONTROL	SWITCH
0	OFF
1	ON

VCONTROL	V _{IN} TO V _{OUT} RESISTANCE
V _{SS} V _{DD}	$^{>}10^9$ ohms typical $3 imes10^2$ ohms typical

LOGIC DIAGRAM

LOGIC DIAGRAM RESTRICTIONS V_{SS}< V_{IN} <V_{DD} V_{SS}<V_{OUT}<V_{DD}

Propagation Delay Time, Control to Output

MELODY GENERATOR

UM3482 276-1797

PIN CONNECTION

GENERAL DESCRIPTION

The UM3482A is a mask-ROM-programmed multi-instrument melody generator, implemented in the CMOS technology. It is designed to play the melody according to the previously programmed information and is programmed with 12 songs with 3 instrument sounds, the piano, the organ and the mandolin. The UM3482A will play the following songs: AMERICAN PATROL, RAB-BITS, OH, MY DARLING CLEMENTINE, BUTTERFLY, LONDON BRIDGE IS FALLING DOWN, ROW, ROW, ROW YOUR BOAT, ARE YOU SLEEPING, HAPPY BIRTHDAY, JOY SYMPHONY, HOME SWEET HOME, WIEGENLIED, and MELODY ON PURPLE BAMBOO.

The device also includes a pre-amplifier which provides simple interface to the driver circuit.

FEATURES

- Powered by a 1.5V battery
- Low stand-by current
- 512 notes memory, up to 16 songs
- Play all the songs repeatedly or auto stop
- Play one song only, repeatedly or auto stop
- Every song starts from the first note
- Any song can be present
- 3 timbres—piano, organ and mandolin
- 5 tempos available through mask setting
- On chip envelope modulator and pre-amplifier

ABSOLUTE MAXIMUM RATINGS

DC supply voltage	– 0.3 V to 5.0 V
Input/output voltage	$V_{SS} - 0.3 \text{ V}$ to $V_{DD} + 0.3 \text{ V}$
Operating ambient temperature	– 10°C to 60°C
Storage temperature	55°C to 125°C

BLOCK DIAGRAM

APPLICATIONS

- Toys
- Doorbells
- Music Boxes
- Melody/Clock Timers
- Telephones

TYPICAL APPLICATION

General application

TYPICAL APPLICATIONS

Chime function application

Melody door bell

Low cost applications

10	PIN	EUNCTION
1	AUTOD	O to the second and
1	1(ISP)	Output hag of melody
	BIOL NO U	In normal operating
	a proampin	this pin should be
		open
	2(CE)	Chin enable if
	2(01)	connected to Vpp
		Chip disable if
	The support	connected to V _{SS}
	3(LP)	The melody plays only
		one song if this pin
		connected to V _{DD}
	wohadin bae	The melody plays all
	rites gran de	songs if this pin
	PERCENT ACT	connected to V _{SS}
	4(SL)	A positive going edge
	LEP.H WIL	applied to this pin the
	and the second	melody will change to
		the next song
	5(AS)	The melody will be
		repeated if this pin
		Connected to V _{DD}
		The melody will be
		connected to Vac
	6(NC)	No connection
	7(ENV)	Envelope circuit
		terminal
	8(Vss)	Negative supply
		power
	9(MTO)	Modulated tone signal
		output
	10(OP1)	Pre-amplifier output 1
	11(OP2)	Pre-amplifier output 2
	12(MT1)	Modulated tone signal
	and the second sec	input to the pre-
		amplifier
	13(OSC3)	
	the substitution	Pin 13-15 can be
	and the second second second	connected as an RC
	14 (OSC2)	oscillator
		External oscillating
		Signal can be input to
	15(0501)	PIII 15
	10(0301)	Desition 1
	10(VDD)	Positive power supply

UM3482

276-1797

276-2506

65,536-BIT DYNAMIC RANDOM HYB4164-P2 ACCESS MEMORY (RAM)

GENERAL DESCRIPTION

The HYB4164 is a 65536-word by 1-bit, MOS random access memory circuit fabricated with new 5-volt only n-channel silicon gate technology, using double laver polysilicon. To protect the chip against α -radiation a chip cover is used. The HYB4164 uses single transistor dynamic storage cells and dynamic control circuitry to achieve high speed at very low power dissipation. Multiplexed address inputs permit the HYB4164 to be packaged in an industry standard 16-pin dual-in-line package.

System oriented features include single power supply with $\pm 10\%$ tolerance, on-chip address and data latches which eliminate the need for interface registers and fully TTL compatible inputs and outputs, including clocks.

In addition to the usual read, write and read-modify-write cycles, the HYB4164 is capable of early and delayed write cycles, RAS-only refresh and hidden refresh. Common I/O capability is given by using "early write" operation.

FEATURES

- 65,536 X1 bit organization
- Industry standard 16-pin JEDEC
- configuration • Single $+5V \pm 10\%$ power supply
- Low power dissipation
- 150 mW active (max.)
- 20mW standby (max.)
- 150 ns access time, 280 ns cycle
- All inputs and outputs TTL compatible
- High over-and undershooting capability on all inputs
- Low supply current transients
- CAS controlled output providing latched or unlatched data
- Common I/O capability using "early write" operation
- Read-Modify-Write, RAS-only refresh, hidden refresh
- 256 refresh cycles with 4 ms long refresh period
- Page Mode Read and Write

ABSOLUTE MAXIMUM RATINGS

Voltages on any Pin relative to V_{SS}
Voltage High Level Input (All Inputs) +2.4 to +6.0V
Voltage Low Level Input
Voltage Output High ($I_0 = -5mA$)+2.4 to + $V_{CC} V$
Voltage Output Low ($I_0 = +4.2$ mA)
Short Circuit Output Current
Power Dissipation1.0W
Operating Temperature Range0 to +70°C
Storage Temperature Range

FUNCTIONAL DESCRIPTIONS

Addressing $(A_0 - A_7)$

For selecting one of the 65536 memory cells, a total of 16 address bits are required. First 8 row-address bits are setup on pins A₀ through A₇ and latched onto the row address latches by the Row Address Strobe (RAS). Then the 8 column-address bits are set-up on pins A₀ through A₇ and latched onto the column address latches by the Column Address Strobe (CAS). All input addresses must be stable on or shortly after the falling edge of RAS and CAS respectively. CAS is internally gated by RAS to permit triggering of column address latches as soon as the Row Address Hold Time (t_{RAH}) specification has been satisfied and the address inputs have been changed from row-address to columnaddress.

It should be noted that \overline{RAS} is similar to a chip enable in that it activates the sense amplifiers as well as the row decoder. CAS is used as a chip-select activating the column decoder and the input and output buffers.

PIN CONNECTION

PIN NAMES	FUNCTION
A ₀ - A ₇	Address Inputs
CAS	Column Address Strobe
DI	Data In
NC	No Connection
DO	Data Out
RAS	Row Address Strobe
WE	Write Enable
V _{CC}	Power Supply (+5V)
V _{SS}	Ground (OV)

HYB4164 276-2506 BLOCK DIAGRAM

FUNCTIONAL DESCRIPTIONS (Cont'd)

Write Enable (WE)

The read or write mode is selected with the \overline{WE} input. A logic high (V_{IH}) on \overline{WE} dictates read mode; logic low (V_{IL}) dictates write mode. The data input is disabled when the read mode is selected. When \overline{WE} goes low prior to \overline{CAS} , data output (DO) will remain in the high-impedance state for the entire cycle permitting common I/O operation.

Data Input (DI)

Data is written during a write or read-modify-write cycle. The falling edge of \overline{CAS} or \overline{WE} strobes data into the on-chip data latch. In an early write cycle \overline{WE} is brought low prior to \overline{CAS} and the data is strobed in by \overline{CAS} with set-up and hold times referenced to this signal. In a delayed write or read-modify write cycle, \overline{CAS} will already be low, thus the data will be strobed in by \overline{WE} with set-up and hold times referenced to this signal.

Power ON

An initial pause of 200 μ s is required after power-up followed by a minimum of eight (8) initialization cycles (any combination of cycles containing a RAS clock such as RAS-only refresh) prior to normal operation. The current requirement of the HYB4164 during power on is, however, dependent upon the input levels RAS, CAS and the rise time of V_{CC}, as shown in the (Current Consumption During Power Up) diagram.

Data Output (DO)

The output buffer is three-state TTL compatible with a fan-out of two standard TTL loads. Data-out is the same polarity as data-in. The output is in a high-impedance state until CAS is brought low. In a read cycle, or read-write cycle, the output is valid after t_{RAC} from the transition of RAS when t_{RCD} (min) is satisfied, or after t_{CAC} from the transition of CAS when the transition occurs after t_{RCD} (max.). CAS going high returns the output to a high-impedance state. In an early write cycle the output is always in the high-impedance state. In a delayed write or read-modify-write cycle, the output will follow the sequence for the read cycle.

TYPICAL CHARACTERISTICS

Current Consumption During Power Up (V_{CC} Risetime 100µs)

HYB4164 276-2506

FUNCTIONAL DESCRIPTIONS (Cont'd)

Hidden Refresh

 \overline{RAS} only refresh cycle may take place while maintaining valid output data. This feature is referred to as Hidden Refresh. Hidden Refresh is performed by holding \overline{CAS} at V_{IL} from a previous memory read cycle.

Page Mode

Page Mode operations allows a faster data transfer rate. This is achieved by maintaining the row address while strobing successive column addresses onto the chip. The time required to set-up and strobe sequential row addresses for the same page is eliminated.

Refresh Cycle

A refresh operation must be performed at least every four milli-seconds to retain data. Since the output buffer is in the high-impedance state unless \overline{CAS} is applied, the \overline{RAS} only refresh sequence avoids any output signal during refresh. Strobing each of the 256 row addresses (A₀ through A₇) with \overline{RAS} causes all bits in each row to be refreshed. \overline{CAS} can remain high (inactive) for this refresh sequence to conserve power.

TYPICAL CHARACTERISTICS (Cont'd)

 I_{CC2} STANDBY CURRENT vs TEMPERATURE (TYP.) $V_{CC}\,{=}\,5.5V$

HYB4164 276-2506

HYB4164 276-2506

33

HYB4164 276-2506

Address Decoder Scrambling

Topology Description

The evaluation and incoming testing of RAMs normally requires a description of the internal topology of the device in order to check for "worst case" pattern.
64K UV EPROM

MSM 2764RS 276-1251

GENERAL DESCRIPTION

The MSM2764RS is a 8192W \times 8 bit ultraviolet erasable and electrically programmable read-only memory. Users can freely prepare the memory content, which can be easily changed, so the MSM2764RS is ideal for microprocessor programs.

The MSM2764RS is manufactured using the N channel double silicon gate MOS technology.

FEATURES

- + 5V single power supply
- 8192 words × 8 bits configuration
 Access time: MAX 250ns
- Power consumption: MAX 525 mW (during operation) MAX 184 mW (during stand-by)
- Perfect static operation
- INPUT/OUTPUT TTL level (three state output)

ABSOLUTE MAXIMUM RATINGS

Program Voltage V _{PP}	-0.6 V to 23 V
All input/output voltages Vin, Vout	0.6 V to 7V
Power P _D	1.5 W
Operating Temperature T _A	0°C to 70°C
Storage Temperature T _{S&G} –	55°C to 125°C

-.0.

BLOCK DIAGRAM

PIN CONNECTIONS

TMS4256 276-1252

256 K DYNAMIC RAM

GENERAL DESCRIPTION

The 4256 is a high-speed, 262,144-bit dynamic random-access memory, organized as 262,144 words of one bit each. It employs state-of-the-art SMOS (scaled MOS) N-channel double-level polysilicon/polycide gate technology for very high performance combined with low cost and improved reliability.

This device features maximum \overline{RAS} access times of 150ns. Typical power dissipation is as low as 275 mW operating and 12.5 mW standby.

New SMOS technology permits operation from a single 5-V supply, reducing system power supply and decoupling requirements, and easing board layout. I_{DD} peaks are 125 mA typical, and -1-V input voltage undershoot can be tolerated, minimizing system noise considerations.

All inputs and outputs, including clocks, are compatible with Series 74 TTL. All address and data-in lines are latched on chip to simplify system design. Data out is unlatched to allow greater system flexibility.

FEATURES

- 262,144 × 1 organization
- Single 5 V supply
- Access time row address 150ns (Max.)
- Access time column address 75ns (Max.)
- Read or write cycle 260ns (Min.)
- Long refresh period 4ms (Max.)
- Low refresh overhead time
- On-chip substitute bias generator
- All inputs, outputs, and clocks fully TTL compatible
- RAS-only refresh mode
- Hidden refresh mode
- \overline{CAS} -before- \overline{RAS} refresh mode

ABSOLUTE MAXIMUM RATINGS

Voltage range for any pin including V_{DD} supply (see Note 1) 1 V to 7 V
Short circuit output current 50 mA
Power dissipation 1 W
Operating free-air temperature range
Storage temperature range – 65°C to 150°C
NOTES: 1. All voltage values are with respect to Vss.

BLOCK DIAGRAM

PIN CONNECTION

A8 1	\bigcirc	16 VSS
D 2		15 CAS
₩ 3		14 Q
RAS 4		13 A6
A0 5		12 A3
A2 6		11 A4
A1 7		10 A5
VDD 8	an and a birth a sta	9 A7

TRUTH TABLE

PIN NAMES	FUNCTION
A0-A8	Address Inputs
CAS	Column-Address Strobe
D	Data In
Q	Data Out
RAS	Row-Address Strobe
V _{DD}	5-V Supply
V _{SS}	Ground
W	Write Enable

OPERATION

address (A0 through A8)

Eighteen address bits are required to decode 1 of 262,144 storage cell locations. Nine row-address bits are set up on pins A0 through A8 and latched onto the chip by the row-address strobe (\overline{RAS}). Then the nine column-address bits are set up on pins A0 through A8 and latched onto the chip by the column-address strobe (\overline{CAS}). All addresses must be stable on or before the falling edges of \overline{RAS} and \overline{CAS} . \overline{RAS} is similar to a chip enable in that it activates the sense amplifiers as well as the row decoder. \overline{CAS} is used as a chip select activating the column decoder and the input and output buffers.

write enable (W)

The read or write mode is selected through the write-enable (\overline{W}) input. A logic high on the \overline{W} input selects the read mode and a logic low selects the write mode. The write-enable terminal can be driven from standard TTL circuits without a pull-up resistor. The data input is disabled when the read mode is selected. When \overline{W} goes low prior to \overline{CAS} , data out will remain in the high-impedance state for the entire cycle permitting common I/O operation.

data in (D)

Data is written during a write or read-modify-write cycle. Depending on the mode of operation, the falling edge of \overline{CAS} or \overline{W} strobes data into the on-chip data latch. This latch can be driven from standard TTL circuits without a pull-up resistor. In an early write cycle, \overline{W} is brought low prior to \overline{CAS} and the data is strobed in by \overline{CAS} with setup and hold times referenced to this signal. In a delayed-write or read-modify-write cycle, \overline{CAS} will already be low, thus the data will be strobed in by \overline{W} with setup and hold times referenced to this signal.

data out (Q)

The three-state output buffer provides direct TTL compatibility (no pull-up resistor required) with a fan out of two Series 74 TTL loads. Data out is the same polarity as data in. The output is in the high-impedance (floating) state until \overline{CAS} is brought low. In a read cycle the output goes active after the access time interval $t_{a(C)}$ that begins with the negative transition of \overline{CAS} as long as $t_{a(R)}$ is satisfied. The output becomes valid after the access time has elapsed and remains valid while \overline{CAS} is low; \overline{CAS} going high returns it to a high-impedance for the read cycle.

refresh

A refresh operation must be performed at least once every four milliseconds to retain data. This can be achieved by strobing each of the 256 rows (A0–A7). A normal read or write cycle will refresh all bits in each row that is selected. A \overline{RAS} -only operation can be used by holding \overline{CAS} at the high (inactive) level, thus conserving power as the output buffer remains in the high-impedance state.

CAS-before-RAS refresh

The \overline{CAS} -before- \overline{RAS} refresh is utilized by bringing \overline{CAS} low earlier than \overline{RAS} (see parameter t_{CRL}) and holding it low after \overline{RAS} falls (see parameter t_{CLRL}). For successive \overline{CAS} -before- \overline{RAS} refresh cycles, \overline{CAS} can remain low while cycling \overline{RAS} . The external address is ignored and the refresh address is generated internally.

hidden refresh

Hidden refresh may be performed while maintaining valid data at the output pin. This is accomplished by holding \overline{CAS} at $V_{\rm IL}$ after a read operation and cycling \overline{RAS} after a specified precharge period, similar to a " \overline{RAS} -only" refresh cycle. The external address is also ignored during the hidden refresh cycles.

page mode

Page-mode operation allows effectively faster memory access by keeping the same row address and strobing random column addresses onto the chip. Thus, the time required to setup and strobe sequential row addresses for the same page is eliminated. The maximum number of columns that can be addressed is determined by $t_{w(RL)}$, the maximum RAS low pulse duration.

power-up

To achieve proper device operation, an initial pause of 200 μ s is required after power up followed by a minimum of eight initialization cycles.

TMS 4256 276-1252

TMS 4256 276-1252

hidden refresh cycle timing

automatic (CAS-before-RAS) refresh cycle timing

38

QUAD TWO-INPUT NAND GATE

GENERAL DESCRIPTION

This device employs TTL logic to achieve high speed at moderate power dissipiation. It provides the basic functions used in the implementation of digital integrated circuit systems.

For best noise immunity and switching speed, unused inputs should not be left floating, but should be held between 2.4 V and the absolute maximum input voltage.

Two possible ways at handling unused inputs are:

- (1) Connect unused inputs to V_{CC} . For all multi-emitter conventional TTL inputs, A 1 to 10K ohm current limiting series resistor is recommended, to protect against V_{CC} transients that exceed 5.5 V.
- (2) Connect the unused input to the output of an unused gate that is forced high.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage V _{CC}	Ţ
Input High Voltage	T
Input Low Voltage	1
Input Clamp Diode Voltage ($V_{CC} = 5.0 \text{ V}$, $I_{IN} = -12 \text{ mA}$)	1
Input High CUrrent ($V_{CC} = Max., V_{IN} = 2.4 V$)	1
Input Low Current ($V_{CC} = Max., V_{IN} = 0.4 V$)	1
Operating Temperature 0 to + 70°C	3

TYPICAL APPLICATIONS

Control Gate

1/4 7400 - OUT A OUT LH

HL

Inverter

OR Gate

7400

OUT

HHHHL

4-Input NAND Gate

OUT

AND-OR Gate

1/4 7400 1/4 7400 ۸ B OUT HL LH H H

Exclusive-NOR Gate

PIN CONNECTION

AND Gate

NOR Gate

HEX INVERTER

GENERAL DESCRIPTION

This device employs TTL logic to achieve high speed at moderate power dissipation. This hex inverter provides the basic functions used in the implementation of digital integrated circuit systems.

For best noise immunity and switching speed, unused inputs should not be left floating, but should be held between 2.4 V and the absolute maximum input voltage.

Two possible ways of handling unused inputs are:

- (1) Connect unused inputs to V_{CC} . For all multi-emitter conventional TTL inputs, A 1 to 10K ohm current limiting series resistor is recommended, to protect against V_{CC} transients that exceed 5.5 V.
- (2) Connect the unused input to the output of an unused gate that is forced high.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage V_{CC}	
Input High Voltage	
Input Low Voltage0.8 V	
Input Clamp Diode Voltage ($V_{CC} = 5.0 \text{ V}$, $I_{IN} = -12 \text{ mA}$)	
Input High Current ($V_{CC} = Max., V_{IN} = 2.4 V$)	
Input Low Current (V_{CC} = Max., V_{IN} = 0.4 V) 1.6 mA	
Operating Temperature $0 \text{ to } + 70^{\circ}\text{C}$	

PIN CONNECTION

TRUTH TABLE $Y = \overline{A}$

1/6

TYPICAL APPLICATIONS

Allows one signal to control two or more inputs.

Universal Expander

Audio Oscillator

Bouncefree Switch

1-of-2 Demultiplexer

QUAD TWO-INPUT AND GATE

GENERAL DESCRIPTION

This device employs TTL logic to achieve high speed at moderate power dissipation. These gates provide the basic functions used in the implementation of digital integrated circuit systems.

For best noise immunity and switching speed, unused inputs should not be left floating, but should be held between 2.4 V and the absolute maximum input voltage.

Two possible ways at handling unused inputs are:

(1) Connect unused inputs to V_{CC} . For all multi-emitter conventional TTL inputs, a 1 to 10K ohm current limiting series resistor is recommended, to protect against V_{CC} transients that exceed 5.5 V.

(2) Connect the unused input to the output of an unused gate that is forced high.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage V_{CC}
Input High Voltage 2.0 V
Input Low Voltage0.8 V
Input Clamp Diode Voltage ($V_{CC} = 5.0 \text{ V}$, $I_{IN} = -12 \text{ mA}$)
Input High Current ($V_{CC} = Max., V_{IN} = 2.4 V$)
Input Low Current (V_{CC} = Max., V_{IN} = 0.4 V) 1.6 mA
Operating Temperature

PIN CONNECTION

TR	UT	Ή	TA	BLE	

TYPICAL APPLICATIONS

AND Gate Buffer

NAND Gate

NOR Gate

AND-OR-Invert Gate

Digital Transmission Gate

4-Input AND Gate

7447 276-1805

BCD TO SEVEN-SEGMENT DECODER/DRIVER

GENERAL DESCRIPTION

This versatile binary-coded-decimal 7-segment display driver fulfills a wide variety of requirements for most active high (common cathode) and active low (common anode) light emitting diodes (LED) or lamp displays. It fully decodes a 4-bit BCD input into a number from 0 through 9 in the standard 7-segment display format, and BCD numbers above 9 into unique patterns that verify operation. All circuits operate off of a single 5.0V supply. The output will withstand 15 Volts at a maximum leakage current of 250μ A.

FEATURES

- Lamp-test input
- Leading trailing zero suppression (RBI and RBO)
- Blanking input that may be used to modulate lamp intensity or inhibit output
- TTL and DTL compatible
- Input clamping diodes
- Open collector outputs drive indicators directly

ABSOLUTE MAXIMUM RATINGS

Supply Voltage V _{CC}	.4.75 - 5.25 V
Continuous Voltage at Outputs a-g	Max. 15 V
Logic 1 Input Voltage	Min. 2 V
Logic 0 Input Voltage	Max. 0.8 V
Logic 0 Output Voltage BI/RBO	Max. 0.4 V
Logic 1 Output Voltage at BI/RBO	Min. 2.4 V
Power	320 mW

TRUTH TABLE

DECIMAL			INPU	TS			BI/RBO†	BI/RBO† OUTPUTS							NOTE
FUNCTION	LT	RBI	D	С	B	Α	DI/ RDO	a	b	C	d	е	f	g	NOTE
0	Н	Н	L	L	L	L	Н	L	L	L	L	L	L	H	
1	Н	Х	L	L	L	Н	Н	H	L	L	Н	Н	H	Н	
2	Н	Х	L	L	Н	L	Н	L	L	Η	L	L	Н	L	onthe processing of
3	Н	Х	L	L	Η	Н	Н	L	L	L	L	Η	H	L	and safe shakes
4	H	Х	L	Η	L	L	Н	H	L	L	Η	Η	L	L	
5	H	Х	L	Η	L	Н	H	L	Η	L	L	Н	L	L	
6	H	Х	L	Η	Н	L	H	H	Η	L	L	L	L	L	
7	H	Х	L	Η	Η	Η	H	L	L	L	Η	Η	Η	Η	EAST
8	H	X	Η	L	L	L	H	L	L	L	L	L	L	L	1
9 ,	H	Х	Н	L	L	Н	H	L	L	L	Η	H	L	L	Section Courses
10	H	Х	Н	L	Н	L	H	H	Η	H	L	L	Н	L	
11	H	X	Η	L	Н	Н	Н	H	Η	L	L	H	H	L	
12	H	Х	Η	Н	L	L	Н	H	L	H	H	Н	L	L	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
13	H	Х	Η	Н	L	Н	H	L	Η	Η	L	Н	L	L	in the second
14	H	Х	Η	Н	Н	L	Н	H	H	H	L	L	L	L	
15	H	Х	Η	Н	Η	Н	H	H	Η	H	H	Н	Η	H	1 1 1
BI	X	Х	Х	X	Х	Х	L	H	Η	Η	Η	Η	H	H	2
RBI	H	L	L	L	L	L	L	H	Η	Н	H	H	H	H	3
LT	L	Х	Х	Х	X	Х	Н	L	L	L	L	L	L	L	4

H = High Level, L = Low Level, X = Irrelevant

Notes: 1. The blanking input (BI) must be open or held at a high logic level when output functions 0 thru 15 are desired. The ripple-blanking input (RBI) must be open or high, if blanking of a decimal zero is not desired.

2. When a low logic level is applied directly to the blanking input (BI), all segment outputs are H regardless of the level of any other input.

3. When ripple-blanking input (RBI) and inputs A, B, C, and D are at a low level with the lamp-test input high, all segment outputs go H and the ripple-blanking output (RBO) goes to a low level (response condition).

4. When the blanking input/ripple blanking output (BI/RBO) is open or held high and a low is applied to the lamp test input, all segment outputs are L.

† BI/RBO is wire-AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO).

PIN CONNECTION

7447 276-1805

INPUT/OUTPUT EQUIVALENTS

Each Input Except BI/RBO

Typical of Outputs a Thru g

TYPICAL APPLICATIONS

0-9 Second/Minute Timer

7490 276-1808

DIVIDE BY 2 OR 5, BCD COUNTER

GENERAL DESCRIPTION

This monolithic BCD counter contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and a three-stage binary counter for which the count cycle length is divide-by-five.

This counter has a gated zero reset and gated set-to-nine inputs for use in BCD nine's complement applications.

To use maximum count length, the B input is connected to the Q_A output. The input count pulses are applied to input A and the outputs are as described in the appropriate truth table. A symmetrical divide-by-ten count can be obtained from the 90 counter by connecting the Q_D output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output Q_A .

FEATURES

- Low power consumption
- High count rates . . . typically 50MHz
- Choice of counting modes
- Fully TTL and CMOS compatible

ABSOLUTE MAXIMUM RATINGS

Typical Power Dissipation
Count Frequency
High Level Input Voltage (Min) 2 V
Low Level Input Voltage (Max)0.8 V
High Level Input Current
Low Level Output Current (Max) 16 mA
V_{CC} to Ground
Voltage Applied to Outputs (Output High) -0.5 to $+5.5$ V

INPUT/OUTPUT EQUIVALENTS

Each Input

Typical of all Outputs

BLOCK DIAGRAM

TRUTH TABLES RESET/COUNT

R	ESET	INPUT	OUTPUTS						
RO(1)	RO(2)	R9(1)	R9(2)	QD	Qc	QB	QA		
H	Н	L	X	L	L	L	L		
H	Н	Х	L	L	L	L	L		
X	Х	Н	Н	Н	L	L	Н		
Х	L	X	L	COUNT					
L	Х	L	Х		COL	JNT			
L	Х	Х	L		COU	JNT			
X	L	L	Х		COU	JNT			

BCD COUNT SEQUENCE (See Note A)

COUNT	OUTPUTS			
	QD	Qc	QB	QA
0	L	L	L	L
1	L	L	L	Н
2	L	L	Н	L
3	L	L	Н	H
4	L	Н	L	L
5	L	Н	L	Н
6	L	Н	Н	L
7	L	Н	Н	Н
8	Н	L	L	L
9	Н	L	L ,	Н

BI-QUINARY (5-2) (See Note B)

COUNT	OUTPUTS			
	QA	QD	Qc	QB
0	L	L	L	L
1)	L	L	L	Н
2	L	L	Н	L
3	L	L	Н	Н
4	L	Н	L	L
5	Н	L	L	L
6	H	L	L	H·
7	H	L	Н	L
8	Н	L	Н	Н
9	H	Н	L	L
I - Low Low	ol			

H = High Level

Notes:

(A) Output Q_A is connected to input B for

BCD count.(B) Output Q_D is connected to input A for biquinary count.

INTERFACE (DRIVER)

QUAD LINE DRIVER

MC1488 276-2520

GENERAL DESCRIPTION

The 1488 is a monolithic quad line driver designed to interface data terminal equipment with data communications equipment in conformance with the specifications of EIA Standard No. RS-232C.

FEATURES

- Current Limited Output ±10 MA typ
- Power-Off Source Impedance 300 Ohms min
- Simple Slew Rate Control with External Capacitor
- Flexible Operating Supply Range

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC})	. 15 V
(V _{EE})	- 15 V
Output Signal Voltage (VO)	±15 V
Power (PD)	. 1 W
Input Current-Low Logic State (V _{IL} = 0) (See Fig. 8) 1	.6 mA
Input Current-High Logic State (V _{IH} = 5.0V) (See Fig. 8)	10 µA
Output Resistance ($V_{CC} = V_{EE} = 0/Vol = \pm 2.0V$	
(See Fig. 11)	. 300Ω

Operating Temperature Range (TA)	·····	0°C To + 75°C
Storage Temperature Range (Tstg)		65°C To +175°C

INTERNAL CIRCUIT (¼ of Circuit Shown)

TYPICAL CHARACTERISTICS

Figure 3—Transfer Characteristics vs Power-Supply Voltage

Figure 4—Short-Circuit Output Current vs Temperature

INTERFACE (DRIVER)

MC1488 276-2520

TYPICAL CHARACTERISTICS (Cont'd)

Figure 6—Output Voltage and Current-Limiting Characteristics

Figure 7—Maximum Operating Temperature vs Power-Supply Voltage

Switching Response

TEST CIRCUITS

Figure 9- Output Voltage

Figure 10 - Output Short-Circuit Current

Figure 8- Input Current

Figure 11 - Output Resistance (Power-Off)

Figure 12 - Power-Supply Currents

MC1488 276-2520

APPLICATIONS INFORMATION

The Electronic Industries Association (EIA) RS232C specification detail the requirements for the interface between data processing equipment and data communications equipment. This standard specifies not only the number and type of interface leads, but also the voltage levels to be used. The 1488 quad driver and its companion circuit, the 1489 quad receiver, provide a complete interface system between DTL or TTL logic levels and the RS232C defined levels. The RS232C requirements as applied to drivers are discussed herein.

The required driver voltages are defined as between 5 and 15-volts in magnitude and are positive for a logic "O" and negative for a logic "1". These voltages are so defined when the drivers are terminated with a 3000 to 7000-ohm resistor. The 1488 meets this voltage requirement by converting a DTL/TTL logic level into RS232C levels with one stage of inversion.

The RS232C specification further requires that during transitions, the driver output slew rate must not exceed 30 volts per microsecond. The inherent slew rate of the 1488 is much too fast for this requirement. The current limited output of the device can be used to control this slew rate by connecting a capacitor to each drive output. The required capacitor can be easily determined by using the relationship $C = I_{OS} \times \Delta T / \Delta V$ from which Figure 1 is derived. Accordingly, a 330-pF capacitor on each output will guarantee a worst case slew rate of 30 volts per microsecond.

The interface driver is also required to withstand an accidental short to any other conductor in an interconnecting cable. The worst possible signal on any conductor would be another driver using a plus or minus 15-volt, 500-mA source. The 1488 is designed to indefinitely withstand such a short to all four outputs in a package as long as the power-supply voltages are greater than 9.0 volts (i.e., $V_{CC} \ge 9.0$ V; $V_{EE} \le -9.0$ V). In some power-supply designs, a loss of system power causes a low impedance on the power-supply outputs. When this occurs, a low impedance to ground would exist at the power inputs to the 1488 effectively shorting the 300-ohm output resistors to ground. If all four outputs were then shorted to plus or minus 15 volts, the power dissipation in these resistors would be excessive. Therefore, if the system is designed to permit low impedances to ground at the power-supplies of the drivers, a diode should be placed in each power-supply lead to prevent overheating in this fault condition. These two diodes, as shown in Figure 2, could be used to decouple all the driver packages in a system. (These same diodes will allow the 1488 to withstand momentary shorts to the ±25-volt limits specified in the earlier Standard RS232B.) The addition of the diodes also permits the 1488 to withstand faults with power-supplies of less than the 9.0 volts stated above.

The maximum short-circuit current allowable under fault conditions is more than guaranteed by the previously mentioned 10 mA output current limiting.

OTHER APPLICATIONS

The 1488 is an extremely versatile line driver with a myriad of possible applications. Several features of the drivers enhance this versatility:

1. Output Current Limiting—this enables the circuit designer to define the output voltage levels independing of power-supplies and can be accomplished by diode clamping of the output pins. Figure 14 shows the 1488 used as a DTL to MOS translator where the high-level voltage output is clamped one diode above ground. The resistor divider shown is used to reduce the output voltage below the 300 mV above ground MOS input level limit.

2. Power-Supply Range—as can be seen from the schematic drawing of the drivers, the postive and negative driving elements of the device are essentially independent and do not require matching power-supplies. In fact, the positive supply can vary from a minimum seven volts (required for driving the negative pulldown section) to the maximum specified 15 volts. The negative supply can vary from approximately -2.5 volts to the minimum specified -15 volts. The 1488 will drive the output to within 2 volts of the positive or negative supplies as long as the current output limits are not exceeded. The combination of the current-limiting and supply-voltage features allow a wide combination of possible outputs within the same quad package. Thus if only a portion of the four drivers are used for driving RS232C lines, the remainder could be used for DTL to MOS or even DTL or DTL translation. Figure 15 shows one such combination.

TYPICAL APPLICATIONS

Figure 14—MDTL/MTTL-to-MOS Translator

INTERFACE (RECEIVER)

MC1489 276-2521

QUAD LINE RECEIVER

GENERAL DESCRIPTION

The 1489 monolithic quad line receiver is designed to interface data terminal equipment with data communications equipment in conformance with specificiations of EIA Standard No. RS-232C.

FEATURES

- Input Resistance-3.0 k to 7.0 K ohms
- Input Signal Range—±30 Volts
- Input Threshold Hysteresis Built In
 Response Control
- Response Control

 a) Logic Threshold Shifting
 b) Input Noise Filtering

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC})	10 V
Input Voltage Range (VIR)	±30 V
Output Load Current (IL)	20 mA
Power Dissipation (P _D)	1W
Operating Temperature Range (TA) 0°C To	+75°C
Storage Temperature Range (T _{eta})	-175°C

INTERNAL CIRCUIT (¼ of Circuit Shown)

INPUT A

RESPONSE CONTROL A

OUTPUT A

TEST CIRCUITS

Power-Supply Current

INTERFACE (RECEIVER)

MC1489 276-2521

TYPICAL CHARACTERISTICS

Figure 3—Input Threshold Voltage vs Temperature

Figure 1—Input Current

Figure 4—Input Threshold vs Power-Supply Voltage

Figure 2—Input Threshold **Voltage Adjustment**

Figure 5—Turn-on Threshold vs Capacitance from Response **Control Pin to Gnd**

TYPICAL APPLICATIONS

APPLICATIONS INFORMATION

The Electronic Industries Association (EIA) has released the RS-232C specification detailing the requirements for the interface between data processing equipment and data communications equipment. This standard specifies not only the number and type of interface leads, but also the voltage levels to be used. The 1488 quad driver and its companion circuit, the 1489 quad receiver, provide a complete interface system between DTL or TTL logic levels and the RS-232C defined levels. The RS-232C requirements as applied to receivers are discussed here. The required input impedance is defined as between 3000 ohms and 7000 ohms for input voltages between 3.0 and 25 volts in magnitude; and any voltage on the receiver input in an open circuit condition must be less than 2.0 volts in magnitude. The 1489 circuits meet these requirements with a maximum open circuit voltage of one VBE.

The receiver shall detect a voltage between -3.0 and -25 volts as a logic "1" and input between +3.0 and +25 volts as a logic "0". On some interchange leads, an open circuit or power "OFF" condition (300 ohms or more to ground) shall be decoded as an "OFF" condition or logic "1". For this reason, the input hysteresis thresholds of the 1489 circuits are all above ground. Thus an open or grounded input will cause the same output as a negative of logic "1" input.

LINCMOS (A TO D CONVERTER)

8-BIT ANALOG TO DIGITAL CONVERTER

GENERAL DESCRIPTION

The TLC548 8-bit Analog-to-Digital Converter is a complete data acquisition system on a single chip. It is designed for serial interface with a microprocessor, peripheral, or digital logic circuitry through 3-state Data Output, Chip Select, and I/O Clock control signals.

FEATURES

- Versatile control logic
- An on-chip sample-and-hold circuit that can operate automatically or under microprocessor control
- A high-speed converter with differential high-impedance reference voltage inputs that facilitate ratiometric conversion and scaling, while isolating the conversion circuitry from logic and supply noises.
- The TLC548 provides low-error conversion of ± 0.5 least-significant bit (LSB) in less than 17 microseconds.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V _{CC} (See Note 1)	6.5 V
Input Voltage Range (Any Input) 0.3 V to V _{CC+}	0.3 V
Output Voltage Range – 0.3 V to V _{CC+}	0.3 V
Operating free-air Temperature Range 40°C to	85°C

NOTES: 1. All voltage values are with respect to network ground terminal with the REF- and GND terminal pins connected together, unless otherwise noted.

Overview of Operation

The TLC548 is a complete data acquisition system and it includes such functions as an internal System Clock, Sample-and-hold, 8-bit A/D converter, Data register, Control logic, I/O Clock, and a Chip Select (CS).

These control inputs and a 3-state data output facilitate serial communications with a microprocessor or minicomputer. A conversion can be completed in a maximum of 17 microseconds, while total access and conversion time is a maximum of 25 microseconds.

The internal System Clock and I/O Clock are used independently and require no special speed or phase relationship. This simplifies the hardware and software control tasks for the device. Because of this independence and the internal generation of the System Clock, the microprocessor and software need only read the previous conversion result and start the conversion with the I/O Clock. The internal System Clock drives the "conversion-crunching" circuitry.

When \overline{CS} is high, the Data Output pin is in a high-impedance condition and the I/O Clock pin is disabled.

This condition allows each of these pins to share a control logic point with its counterpart pin when additional TLC548 devices are used.

Typical Control Sequence

The control sequence has been designed to minimize the time and effort required to initiate conversion and obtain the conversion result.

A typical control sequence consists of the following steps.

- 1. CS (Chip Select) is brought low.
- After a \overline{CS} transition (from high to low), the internal circuitry of the TLC548 waits for two rising edges and then one falling edge of the internal System Clock before recognizing the transition. This delay minimizes errors caused by noise at the \overline{CS} input. The most-significant bit (MSB) of the result of the previous conversion then appears on the Data Output pin.
- 2. The negative edges of the first four I/O Clocks shift out the 2nd, 3rd, 4th, and 5th most-significant bits of the result of the previous conversion.

3. The on-chip sample-and-hold begins sampling the analog input after the 4th falling edge.

This operation basically involves the charging of internal capacitors to the voltage level of the analog input.

LINCMOS (A TO D CONVERTER)

Typical Control Sequence (cont.)

4. Three more clock cycles are applied to the I/O pin.

- The 6th, 7th, and 8th bits of the result of the previous conversion are shifted out on the negative edges of these clock cycles.
- 5. The 8th and final clock cycle is applied to the I/O Clock pin. The falling edge of this clock cycle completes the analog sampling process and initiates the hold function.
- Conversion is performed during the next 36 System Clock cycles. After the final I/O Clock cycle, CS must go high or the I/O Clock must remain low for at least 36 System Clock cycles to allow for the conversion function.
- The operating sequence is illustrated below.

Operating Sequence

NOTES: A. The conversion cycle is initiated with the trailing edge of the 8th I/O Clock pulse after \overline{CS} goes low.

- B. The most-significant bit (MSB) is then placed on the DATA OUT pin after \overline{CS} is brought low.
- b. The new significant of twisp is then placed on the DATA GOT pin affects is prought low. The remaining seven bits (A6-A) are shifted out on the first seven I/O Clock falling edges.
 C. To minimize errors caused by noise on the CS signal, the internal circuitry waits for two rising edges and then one falling edge of the Internal System Clock (1.4 μs at 2 MHz) after a Chip Select transition before responding to control input signals. Therefore, no attempt should be made to shift out conversion data until the minimum Chip Select setup time has elapsed.

Keeping CS Low During Multiple Conversions

CS can be kept low during periods of multiple conversions.

If \overline{CS} is taken high, it must remain high until the end of the conversion. Otherwise, a valid falling edge of \overline{CS} will cause a reset condition, aborting the conversion in process.

Stopping an Ongoing Conversion

An ongoing conversion can be stopped and a new conversion started by performing steps 1 thru 6 listed under typical control sequence before the 36 System Clock cycles occur. Such an action yields the conversion result of the previous conversion, not the ongoing conversion.

Starting Conversion at a Specific Time

For certain applications such as strobing, it is necessary to start conversion at a specific point in time. The TLC548 will accommodate these applications.

To trigger a conversion at a specific point in time, control hardware or software must manipulate the 8th I/O clock cycle. The sequence for a conversion at a desired instant is:

- I. The on-chip sample-and-hold operation waits for the falling edge of the 4th I/O clock cycle and begins sampling. The TLC548 follows the analog input but does not hold it yet.
- II. When the 8th I/O clock cycle is high, control hardware or software must keep it high until the desired instant.
- III. At the desired instant, control hardware or software must lower the clock. The falling edge of the 8th I/O clock cycle causes the input to be held and initiates the conversion.

TLC 548 276-1796

TLC 548 276-1796

Intel 8051/52 Serial Port Interface Operating Sequence

The serial data for the conversion result from the TLC548 enters the microprocessor through the RXD pin. By using the inverted TXD shift clock as an I/O Clock for the TLC548, previous conversion data can be transferred to the microprocessor.

The serial port's Mode 0 state is used to permit 8-bit transmission and reception. The TLC548 sends the most-significant bit of the conversion result first; the serial buffer receives this bit as the least-significant bit. The software then reverses the conversion bits and places them in the proper order.

The timing consists of the following three major phases:

- 1. After CS goes low, eight I/O Clock cycles access and sample the new analog input. At the same time, I/O Clock falling edges bring out the previous conversion result.
- 2. Conversion begins when the eighth I/O Clock goes low. Conversion requires 36 internal System Clock cycles after the eighth I/O Clock goes low. The maximum conversion time is 17 microseconds.
- 3. Eight falling edges of the I/O Clock bring out the previous conversion result.

Interface Control Software

	ACALL SR549D	Access, sample and hold new analog signal.
		Delay must occur here to allow the A/D chip to complete conversion. The delay must allow 36 A/D chip internal System Clock cycles to occur. Conversion requires maximum of 17 microseconds.
	ACALL SR549D	Access, sample and hold new analog signal. Bring out previoous conversion result. Serial port read reverses data conversion bits coming to micro- processor so that they are in the following order: b0(LSB), b1, b2, b3, b4, b5, b6 b7(MSB). These bits and Carry bit (C) are presented in the following instruction comments so the reader understands the technique used to place bits in proper order.
	RLC A RLC A MOV ACC.1,C MOV C,ACC.2 RLC A MOV ACC.3,C MOV C,ACC.4 RLC A MOV ACC.5,C MOV C,ACC.6 RLC A MOV ACC.7,C RL A SWAP A	, 6543210C 7; b7 is now in Carry 543210C7 6; b6 is now in Carry 54321067 6; put b6 into ACC.1 54321067 0; put b0 into C ; 4321067 0; put b0 into C ; 43215670 5; put b5 into ACC.3 ; 43215670 1; put b1 into C ; 32156701 4; b4 is now in Carry ; 32456701 4; put b4 into ACC.5 ; 32456701 2; put b2 into C ; 24567012 3; b3 is now in Carry ; 34567012 3; prepare for SWAP A ; 01234567 ; bits ordered correctly ; Conversion result is in Accumulator
SR549D	CLR P1.6 ORL SCON,#10H ANL SCON,#FEH JNB SCON.0,RCV CPL P1.6 RET END	; ; Subroutine ACALL ; Lower Chip Select ; Set REN ; Reset R1 ; R1 flag not set; branch ; until reception is complete. ; Raise Chip Select ; Conversion is in SBUF

LINCMOS (A TO D CONVERTER)

The Operating Sequence (cont.)

This interface is ideal if the Intel microprocessor's serial port does not have to be used for another purpose. However, if another purpose is required by the serial port, the microprocessor's serial port may be multiplexed so that both the TLC548 and the additional purpose may be accommodated.

Circuit Timing for Intel 8051/52

Z80A Interface

The Z80A interface is an economical solution, offering efficient control software and communications with the TLC548.

Required Software

A simple program segment that reads in a previous conversion result and starts a conversion is shown below. Placing this program segment in a loop makes it possible to initiate a conversion and read previous conversion results in 111 microseconds.

A REAL PROPERTY AND A REAL		
	LD C,08H	; Load bit counter
	LD B,00H	; Initialize result register
	OUT (CSLOW),A	; Bring Chip Select low
LOOP	RLC B	; Rotate result register left
	IN A,(BIT)	; Read in a bit & shift next
	AND 01H	; Mask off bit 0
	OR B	; Or new bit with result
	LD B,A	; Store in result register
	DEC C	; Decrement bit counter
	JP NZ,LOOP	; Get another bit if not zero
	OUT (CSHIGH).A	: Bring Chin Select high

The Operating Sequence

Latching in a low from address bit A0 brings Chip Select low. Execution of an IN instruction causes $\overline{\text{RD}}$ and $\overline{\text{IORQ}}$ to become active, generating one I/O Clock pulse. A data bit is read in just before the falling edge of the I/O Clock. The falling edge shifts out the next data bit.

Sampling of analog input begins at the falling edge of the 4th I/O Clock and continues until the falling edge of the 8th I/O Clock. At that time, conversion begins; conversion requires 17 microseconds.

 \overline{CS} is brought high after the 8th I/O Clock to disable all inputs and outputs so that conversion may proceed undisturbed.

TLC 548 276-1796

Microprocessor Interface

GENERAL DESCRIPTION

The TLC555 is a monolithic timing circuit fabricated using the Lin CMOSTM process. Due to its high-impedance inputs (typically 10¹²Ω), it is capable of producing accurate time delays and oscillations while using less expensive, smaller timing capacitors. The TLC555 achieves both monostable (using one resistor and one capacitor) and astable (using two resistors and one capacitor) operation. In addition, 50% duty cycle astable operation is possible using only a single resistor and one capacitor. The Lin CMOSTM process allows the TLC555 to operate at frequencies up to 2 MHz and be fully compatible with CMOS, TTL, and MOS logic. It also provides very low power consumption (typically 1 mW at $V_{DD} = 5V$) over a wide range of supply voltages ranging from 2 volts to 18 volts.

Threshold and trigger levels are normally two-thirds and one-third respectively of V_{DD} . These levels can be altered by use of the control voltage terminal. When the trigger input falls below trigger level, the flip-flop is set and the output goes high. If the trigger input is above the trigger level and the threshold input is above the threshold level, the flip-flop is reset and the output is low. The reset input can override all other inputs and can be used to initiate a new timing cycle. When the reset input goes low, the flip-flop is reset and the output goes low. Whenever the output is low, a low impedance path is provided between the discharge terminal and ground.

While the complementary CMOS OUTPUT is capable of sinking over 100 mA and sourcing over 10 mA, the TLC555 exhibits greatly reduced supply current spikes during output transitions.

FEATURES

- Very low power consumption (1 mW typical at $V_{DD} = 5 \text{ V}$)
- Capable of very high-speed operation (2 mHz in a stable operation)
- Complementary CMOS output capable of swinging rail to rail
- High output-current capability (sink 100 mA typical) (soucre 10 mA typical)
 Output fully CMOS, TTL, and MOS-compatible
- Low supply current reduces spikes during output transitions
- High impedance input $10^{12}\Omega$ typical)
- Single supply operation from 2 to 18 volts

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{DD}) (See Note 1)	18 V
Input Voltage Range (Any Input)03 V To	5 18 V
Power Dissipation (mW) 60	00mW
Operating Temperature Range 0°C To	70°C
Storage Temperature Range65°C To 1	50°C

NOTES: 1. All voltage values are with respect to network ground terminal.

BLOCK DIAGRAM

PIN CONNECTION

TYPICAL APPLICATION

Circuit for Astable Operation

383 276-703

8 WATT AUDIO POWER AMPLIFIER

• Low distortion

Low noise

• High input impedance

• No turn-on transients

• Short circuit protected

GENERAL DESCRIPTION

The 383 is a cost effective, high power amplifier suited for automotive applications. High current capability (3.5A) enables the device to drive low impedance loads with low distortion. The 383 is current limited and thermally protected. The 383 comes in a 5-pin TO-220 package.

FEATURES

- High peak current capability (3.5A)
- Large output voltage swing
- Externally programmable gain
- Wide supply voltage range (5V-20V)
- Few external parts required
- Pin for pin compatible with TDA2002

ABSOLUTE MAXIMUM RATINGS

Peak Supply Voltage (50 ms)
Operating Supply Voltage
Output Current
Repetitive
Non-repetitive
Input Voltage±0.5V
Power Dissipation
Operating Temperature 0 to +70°C
Storage Temperature60 to +150°C
Lead Temperature (Soldering, 10 seconds)

INTERNAL CIRCUIT

TYPICAL APPLICATIONS

PIN CONNECTION

TYPICAL CHARACTERISTICS

Distortion vs Frequency

Output Swing vs Supply Voltage

386 276-1731

LOW VOLTAGE AUDIO POWER AMPLIFIER

GENERAL DESCRIPTION

The 386 is a power amplifier designed for use in low voltage consumer applications. The gain is internally set to 20 to keep external part count low, but the addition of an external resistor and capacitor between pins 1 and 8 will increase the gain to any value up to 200.

The inputs are ground referenced while the output is automatically biased to one half the supply voltage. The quiescent power drain is only 18 milli-watts when operating from a 6 volt supply, making the 386 ideal for battery operation.

FEATURES

- Battery operation
- Minimum external parts
- Wide supply voltage range 4-12 volts
- Low quiescent current drain 3 mA
- Voltage gains from 20 to 200

APPLICATIONS

- AM-FM radio amplifiers
- Portable tape player amplifiers
- Intercoms
- TV sound systems

ABSOLUTE MAXIMUM RATINGS

- Ground referenced input
- Self-centering output quiescent voltage
- Low distortion
- Eight pin dual-in-line package
- Line drivers
- Ultrasonic drivers
- Small servo drivers
- Power converters

PIN CONNECTION

INTERNAL CIRCUIT

TYPICAL CHARACTERISTICS

Distortion vs

Frequency

OUTPUT POWER (WATTS)

Operating Temperature 0 to +70°C Storage Temperature.....-65 to +150°C Lead Temperature (Soldering. 10 seconds).....+300°C

Distortion vs Output Power

Device Dissipation vs Output Power-4 Ω Load

Device Dissipation vs

Device Dissipation vs Output Power-8 Ω Load Output Power-16 Ω Load

Amplifier with Gain = 50

Amplifier with Gain = 200

5.8W AUDIO POWER AMPLIFIER

GENERAL DESCRIPTION

The TA7205AP is a monolithic audio power amplifier with a built in thermal shut-down circuit designed for car radio and stereo applications.

FEATURES

- Low distortion
 - THD=0.15% (Typ.) (@ P_{OUT} =1W, G_V=55dB) THD=0.07% (Typ.) (@ P_{OUT} =1W, G_V=44dB)
- Operating supply voltage range: V_{CC}=9~18V
- 'PCT' process to insure low noise characteristic
- Current limiting for short-circuit protection
- Built in thermal shut-down circuit
- Built in surge voltage protection circuit

ABSOLUTE MAXIMUM RATINGS

Operating Supply Voltage(V _{CC})	. 18V
Quiescent Supply Voltage (V _{CCO})	. 25V
Output Peak Current (I _O)	4.5A
Quiescent Current (I _{CCO})	30mA
Operating Temperature 20 to +	-75°C
Storage Temperature55 to +3	150°C

INTERNAL CIRCUIT

TYPICAL APPLICATION

5 Watt Audio Amplifier

TYPICAL CHARACTERISTICS

Power Dissipation vs Output Power

Quiescent Current and Output Voltage vs Supply Voltage

20W HI-FI AUDIO AMPLIFIER

GENERAL DESCRIPTION

The TDA1520A is a monolithic integrated hi-fi audio power amplifier designed for asymmetrical or symmetrical power supplies. The circuit can deliver output power up to 20 watts into 4 and 8 ohm speakers and is intended for use in audio and television.

FEATURES

- Low input offset voltage
- Output stage with low cross-over distortion
- A.C. short-circuit protected Very low internal thermal resistance
- Thermal protection
- Very low intermodulation distortion
- Very low transient intermodulation distortion

ABSOLUTE MAXIMUM RATINGS

Supply voltage (VP) 50 V	
Total quiescent current at Vp = 33 V (Itot) 70 mA	
Output power at $d_{tot} = 0.5\%$ sine-wave power	
$Vp = 33 V; R_L = 4 \Omega (PO) \dots 20 W$	
$Vp = 42 V; R_L = 8 \Omega (PO) \dots 20 W$	
Closed-loop voltage gain (externally determined) (Gc)	
Input resistance (externally determined by R ₈₋₁) (Ri) 20 kΩ	1
Signal-to-noise ratio at $P_o = 50 \text{ mW}$ (S/N)	
Supply voltage ripple rejection at f = 100 Hz (RR) 60 dB	

PIN CONNECTION

BLOCK DIAGRAM

PIN	FUNCTION	
1	Non-inverting input	
2	Input ground	
	(substrate)	
3	Compensation	
4	Negative supply	
	(ground)	
5	Output	
6	Positive supply (Vp)	
7	Not connected	
8	Ripple rejection	
9	Investing input	
1	(feedback)	

TDA1520A 276-1305

TYPICAL APPLICATION

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

Total harmonic distortion (d_{tot}) versus output power (P_o) at V_p = 33 V, R_L = 4 Ω , f = 1 kHz.

WIDE BANDWIDTH DUAL JFET INPUT OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage (BI-FET II™) technology). They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents.

These amplifers may be used in applications such as high speed integrators, fast D/A converters, sample and hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The devices also exhibit low noise and offset voltage drift.

FEATURES

- Internally trimmed offset voltage = 2 mV
- Low input bias current = 50pA
- Low input noise voltage = $16nV/\mu$ Hz
- Low input noise current = $0.01 \text{ pA}/\mu \text{Hz}$
- Wide gain bandwidth = 4 MHz
- High slew rate = $13 \text{ V}/\mu \text{s}$
- Low supply current = 3.6 mA
 High input impedance = 10¹²Ω
- Low total harmonic distortion $A_V = 10$,
- Low total narmonic distortion $A_V = 10$, $R_L = 10k$, $V_O = 20$ Vp-p, BW = 20 Hz-20kHz = <0.02% • Low 1/f noise corner = 50 Hz
- fast settling time to $0.0\% = 2\mu s$

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±18V
Power Dissipation	
Differnetial Înput Voltage	±30V
Input Voltage Range	±15V
Output Short Circuit Duration	Continuous
T _{i(MAX)}	115°C
Operating Temperature Range	0 to 70°C
Storage Temperature Range	65 to +150°C
Lead Temperature (Soldering 10 seconds)	300°C

TYPICAL APPLICATIONS

Low Drift Peak Detector

TYPICAL CHARACTERISTICS

Unity Gain Bandwidth vs Temperature

DC Coupled Low-Pass RC Active Filter

Ground Referencing A Differential Input Signal

353 276-1715

TYPICAL APPLICATIONS (Cont'd)

AC Coupled Non-Inverting Amplifier

Fourth Order High Pass Butterworth Filter

For R1/R2 = R4/R3 (CMRR depends on this resistor ratio match) V_0 = 1 + R4/R3 (V_2 – $V_1)$ As shown V_0 = 2(V_2 – $V_1)$

High Input Z, DC Differential Amplifier

Voltage Controlled Oscillator (VCO)

OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

The 741 series are general purpose operational amplifiers which feature improved performance over industry standards.

The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and output. no latch-up when the common mode range is exceeded, as well as freedom from oscillations.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±16V
Power Dissipation	500 mW
Differential Input Voltage	±30V
Input Voltage	±15V
Output Short Circuit Duration	Indefinite
Operating Temperature Range) to $+70^{\circ}$ C
Storage Temperature Range65	to +150°C
Lead Temperature (Soldering, 10 seconds)	300°C

TYPICAL APPLICATIONS

Non-Inverting Amplifier

Non-Inverting Amplifier

Inverting Amplifier

Unity Gain Follower

Optical Power Meter

PIN CONNECTION

*R1 sets the voltage detection threshold (up to \pm 9V). When V_{IN} exceeds the threshold (reference), the LED glows.

Level Detector

*Adjust R3 to just below oscillation point. Adjust R2 and R3 for sounds such as bell, drum, tinkling, etc.

Electronic Bell

Audible Light Sensor

1458 276-038

DUAL OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

The 1458 is a general purpose dual operational amplifier. The two amplifiers share a common bias network and power supply leads. Otherwise, their operation is completely independent.

FEATURES

- No frequency compensation required.
- Short-circuit protection
- Wide common-mode and differential voltage ranges
- Low-power consumption
- No latch up when input common mode range is exceeded

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	±16V
Power Dissipation	400 mW
Differential Input Voltage	±30V
Input Voltage	±15V
Output Short-Circuit DurationIn	definite
Operating Temperature Range 0 to	o +70°C
Storage Temperature Range65 to	+150°C
Lead Temperature (Soldering, 10 sec).	300°C

R4

145

10MΩ C1 1N914

Peak Detector

TYPICAL APPLICATIONS

R2

5 to 18V

1458

C1 stores the peak voltage at VIN

-11-

100µF

Pulse Generator

Function Generator

QUAD OP AMP

GENERAL DESCRIPTION

The 324 series consists of four independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers. dc gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the 324 series can be directly operated off of the standard $\pm 5 V_{DC}$ power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional $\pm 15 V_{DC}$ power supplies.

FEATURES

- Internally frequency compensated for unity gain
- Large dc voltage gain 100 dB
- Wide bandwidth (unity gain) 1 MHz (temperature compensated)
- Wide power supply range:
 - Single supply 3 V_{DC} to 30 V_{DC} or dual supplies $\pm 1.5 V_{DC}$ to $\pm 15 V_{DC}$
- Very low supply current drain (800 μ A) –essentially independent of supply voltage (1 mW/op amp at +5 V_{DC})
- Low input biasing current 45 nA_{DC} (temperature compensated)
- Low input offset voltage 2 mV_{DC} and offset current 5 nA_{DC}
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Large output voltage swing 0 V_{DC} to V⁺ 1.5 \dot{V}_{DC}

ABSOLUTE MAXIMUM RATINGS

Supply Voltage. V ⁺ \dots Supply Voltage. V ⁺ \dots 32 V _{DC} or ±16 V _{DC}
Differential Input Voltage
Input Voltage
Power Dissipation
Molded DIP
Cavity DIP
Output Short-Circuit to GND (One Amplifier) Continuous
$V^+ \le 15 V_{DC}$ and $T_A = 25^{\circ}C$
Input Current (V _{IN} < -0.3 V _{OL})
Operating Temperature Range 0 to +70°C
Storage Temperature Range65 to +150°C
Lead Temperature (Soldering. 10 seconds)

TYPICAL APPLICATIONS

Driving TTL

High Compliance Current Sink

PIN CONNECTION

Voltage Follower

LINEAR (TIMER)

555

276-1723

THRESHOLD 2,12

5 VOLTAGE 3, 11

GENERAL DESCRIPTION

The 555 is a highly stable device for generating accurate time delays or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and duty cycle are accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms. and the output circuit can source or sink up to 200 mA or drive TTL circuits.

FEATURES

- . Timing from microseconds through hours
- Operates in both astable and monostable modes .
- . Adjustable duty cycle
- . Output can source or sink 200 mA
- Output and supply TTL compatible .
- . Temperature stability better than 0.005% per °C
- Normally on and normally off output

ABSOLUTE MAXIMUM RATINGS

APPLICATIONS

- Precision timing • Time delay generation
- Pulse generation Sequential timing

- Pulse width modulation
- Pulse position
- modulation
- Linear ramp generator

TRUTH TABLE

PIN 2 TRIGGER	PIN 6 THRESHOLD	PIN 4 RESET	PIN 3 OUTPUT
Н	Х	Н	L
L	X	Н	H
Н	L	Н	L
Х	X	L	L

X = Don't Care L = Low Level H = High Level

Capacitance vs **Free-Running Frequency** The charge time (output high) is given by: $t_1=0.693~(R_A+R_B)~C$ The discharge time (output low) is given by: $t_2=0.693~(R_B)~C$ Thus the total period is: $T=t_1+t_2=0.693~(R_A+2R_B)~C$ The frequency of oscillation is: $f=1/T=1.44~/(R_A+2R_B)~C$

TYPICAL APPLICATIONS

PIN CONNECTION

TIMER

556

Operating Temperature Range	0 to +70°C
Storage Temperature Range	-65 to +150°C
Lead Temperature (Soldering, 10 seconds)	300°C
TYPICAL CHARACTERISTICS	
100	

Supply Voltage+16V

LINEAR (TIMER)

556 276-1728

DUAL TIMER

GENERAL DESCRIPTION

The 556 dual timing circuit is a highly stable controller capable of producing accurate time delays or oscillation. The 556 is a dual 555. Timing is provided by an external resistor and capacitor for each timing function. The two timers operate independently of each other sharing only $V_{\mbox{CC}}$ and ground. The circuits may be triggered and reset on falling waveforms. The output structures may sink or source 200 mA.

FEATURES

- 51,40 • Timing from microseconds through hours
- . Operates in both astable and monostable modes
- Replaces two 555 timers
- Adjustable duty cycle .
- Output can source or sink 200 mA
- Output and supply TTL compatible
 Temperature stability better than 0.005% per °C
- Normally on and normally off output

APPLICATIONS

- Precision timing
- Pulse generation
- Sequential timing
- Pulse width modulation Pulse position modulation
- Linear ramp generator .
- Time delay generation

ABSOLUTE MAXIMUM RATINGS Supply Walt

Suppry voltage	+16V
Power Dissipation	mW
Operating Temperature Range 0 to +	70°C
Storage Temperature Range	150°C
Lead Temperature (Soldering, 10 seconds)	300°C

TYPICAL CHARACTERISTICS

12

Am

SUPPLY CURRENT

0

Capacitance vs

Free-Running Frequency

Supply Current vs Supply Voltage

SUPPLY VOLTAGE -- V

PIN CONNECTION

317T 276-1778

3-TERMINAL ADJUSTABLE POSITIVE REGULATOR

GENERAL DESCRIPTION

The 317T is an adjustable 3-terminal positive voltage regulator capable of supplying in excess of 1.5 A over a 1.2 V to 37 V output range. This device is exceptionally easy to use and requires only two external resistors to set the output voltage.

In addition to higher performance than fixed regulators, the 317T offers full overload protection available only in IC's. Included on the chip are current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is disconnected.

Normally, no capacitors are needed unless the device is situated far from the input filter capacitors in which case an input bypass is needed. An optional output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripple rejection ratios which are difficult to achieve with standard 3-terminal regulators.

Besides replacing fixed regulators, the 317T is useful in a wide variety of other applications. Since the regulator is "floating" and sees only the input-tooutput differential voltage, supplies of several hundred volts can be regulated as long as the maximum input to output differential is not exceeded.

It will also serve as a simple adjustable switching regulator, programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the 317T can be used as a precision current regulator. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground which programs the output to 1.2 V where most loads draw little current.

FEATURES

- Adjustable output down to 1.2V
- Guaranteed 1.5A outpput current
- Line regulation typically 0.01%/V
- Load regulation typically 0.1%
- Current limit constant with temperature
- 100% electrical burn-in
- Eliminates the need to stock many voltages
- Standard 3-lead transistor package
 80 dB ripple rejection
- 00 ub ripple rejec

ABSOLUTE MAXIMUM RATINGS

Power Dissipation	. Internally limited
Input-Output Voltage Differential	
Operating Junction Temperature Range	0 to +125°C
Storage Temperature	65 to +150°C
Lead Temperature (Soldering, 10 seconds)	300°C

INTERNAL CIRCUIT

PIN CONNECTIONS

FRONT VIEW

317T

TYPICAL APPLICATIONS

317T 276-1778

TYPICAL APPLICATIONS

Low Cost 3A Switching Regulator

12V Battery Charger

AC Voltage Regulator

5A Constant Voltage/Constant Current Regulator

Adjustable 4A Regulator

ADJUSTABLE VOLTAGE REGULATOR

GENERAL DESCRIPTION

The 723 is a voltage regulator designed primarily for series regulator applications. By itself, it will supply output currents up to 150 mA; but external transistors can be added to provide any desired load current. The circuit features extremely low standby current drain, and provision is made for either linear or foldback current limiting.

FEATURES

- 150 mA output current without external pass transistor
- Output currents in excess of 10A possible by adding external transistors
- Input voltage 40V max
- Output voltage adjustable from 2V to 37V
- Can be used as either a linear or a switching regulator

The 723 is also useful in a wide range of other applications such as a shunt regulator, a current regulator or a temperature controller.

ABSOLUTE MAXIMUM RATINGS

Pulse Voltage from V ⁺ to V ⁻ (50 ms)	50V
Continuous Voltage from V+ to V	40V
Input-Output Voltage Differential	40V
Maximum Amplifier Input Voltage (Either Input)	7.5V
Maximum Amplifier Input Voltage (Differential)	
Current from V _z	25 mA
Current from V _{RFF}	15 mA
Internal Power Dissipation Metal Can	800 mW
Cavity DIP	900 mW
Molded DIP	660 mW
Operating Temperature Range	0 to +70°C
Storage Temperature Range Metal Can	to +150°C
DIP	to +125°C
Lead Temperature (Soldering, 10 sec)	300°C

TYPICAL CHARACTERISTICS

Relative Output Voltage vs Output Current

Load Regulation vs Output Current

TYPICAL APPLICATIONS

Regulated Output Voltage 5V Line Regulation ($\Delta V_{IN} = 3V$) 0.5mV Load Regulation ($\Delta I_L = 50mA$) 1.5mV

Note: R3 = $\frac{R1 R2}{R1 + R2}$ for minimum temperature drift.

Basic Low Voltage Regulator

5V VOLTAGE REGULATOR 12V VOLTAGE REGULATOR 15V VOLTAGE REGULATOR

GENERAL DESCRIPTION

This series of three terminal regulators is available with several fixed output voltages making them useful in a wide range of applications. One of these is local on card regulation. eliminating the distribution problems associated with single point regulation. The voltages available allow these regulators to be used in logic systems, instrumentation. HiFi, and other solid state electronic equipment. Although designed primarily as fixed voltage regulators these devices can be used with external components to obtain adjustable voltages and currents.

This series will allow over 1.5A load current if adequate heat sinking is provided. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided. the thermal shutdown circuit takes over preventing the IC from overheating.

FEATURES

VOLTAGE RANGE

•	Internal thermal overload protection	7805
•	No external components required	781212V
•	Output transistor safe area protection	781515V
•	Internal short circuit current limit	

ABSOLUTE MAXIMUM RATINGS

Input Voltage

(Output Voltage Options 5V through 18V)	
(Output Voltage Option 24V)	
Internal Power Dissipation	Internally Limited
Maximum Junction Temperature	
Operating Temperature Range	0 to +70°C
Storage Temperature Range	65 to +150°C
Lead Temperature (Soldering, 10 seconds)	300°C

TYPICAL APPLICATIONS

High Output Current, Short Circuit Protected

PIN CONNECTION

Positive and Negative Regulator
LINEAR (MISCELLANEOUS)

QUAD COMPARATOR

339 276-1712

GENERAL DESCRIPTION

The 339 series consists of four independent voltage comparators which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage.

FEATURES

- Wide single supply:
- Voltage range 2 V_{DC} to 32 V_{DC} or dual supplies $\pm 1 V_{DC}$ to $\pm 16 V_{DC}$ Very low supply current drain (0.8 mA)—independent of supply voltage $(1 \text{ mW/comparator at} + 5 \text{ V}_{\text{DC}})$
- . Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage .
- . Low output 1 mV at 5 μ A; saturation voltage 70 mV at 1 mA
- . Output voltage compatible with TTL (fanout of 2). DTL. ECL. MOS and CMOS logic systems

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V ⁺	\dots 32 V _{DC} or ±16 V _{DC}
Differential Input Voltage	
Input Voltage	$\dots -0.3 \text{ V}_{\text{DC}}$ to $+36 \text{ V}_{\text{DC}}$
Power Dissipation	
Molded DIP	570 mW
Cavity DIP	900 mW
Output Short-Circuit to GND	Continuous
Input Current ($V_{IN} < -0.3 V_{DC}$)	50 mA
Operating Temperature Range	$\dots \dots $
Storage Temperature Range	65 to +150°C
Lead Temperature (Soldering, 10 seconds)	

5 VOLT GROUP

Basic Comparator

INTERNAL CIRCUIT

15V GROUP

LINEAR (MISCELLANEOUS)

TONE DECODER

GENERAL DESCRIPTION

The 567 is a general purpose tone decoder designed to provide a saturated transistor switch to ground when an input signal is present within the passband. The circuit consists of an I and Q detector driven by a voltage controlled oscillator which determines the center frequency of the decoder. External components are used to independently set center frequency, bandwidth and output delay.

FEATURES

- 20 to 1 frequency range with an external resistor
- Logic compatible output with 100 mA current sinking capability
- Bandwidth adjustable from 0 to 14%
- High rejection of out of band signals and noise
- Immunity to false signals
- Highly stable center frequency
- Center frequency adjustable from 0.01 Hz to 500 kHz

APPLICATIONS

- Touch tone decoding
- Precision oscillator
- Frequency monitoring and control
- Wide band FSK demodulation
- Ultrasonic controls
- Carrier current remote controls
- Communications paging decoders

ABSOLUTE MAXIMUM RATINGS

Supply Voltage
Power Dissipation
V ₈ (Output Voltage)
V ₃ (-Voltage at Input)10V
V ₃ (+Voltage at Input) V ₈ +0.5V
Operating Temperature0 to +70°C
Storage Temperature Range

TYPICAL APPLICATIONS

 $f_i = 100 \text{kHz} + 5 \text{V}$

The center frequency of the tone decoder is equal to the free-running frequency of the VCO. This is given by $f_0 \equiv 1/R1C1$ The band width of the filter may be found from the approximation

 $BW = 1070 \sqrt{\frac{V_{IN}}{f_0 C2}} \text{ in \% of } f_0.$

Where: V_{IN} = Input voltage (volts rms), $V_{IN} \le 200 mV$ C2 = Capacitance at pin 2 in μ F.

AC Test Circuit

Frequency Output

PIN CONNECTION

LINEAR (MISCELLANEOUS)

LED FLASHER/OSCILLATOR

3909 276-1705

GENERAL DESCRIPTION

The 3909 is a monolithic oscillator specifically designed to flash light emitting diodes. By using the timing capacitor for voltage boost, it delivers pulses of 2 or more volts to the LED while operating on a supply of 1.5V or less. The circuit is inherently self-starting, and requires addition of only a battery and capacitor to function as a LED flasher.

It has been optimized for low power drain and operation from weak batteries so that continuous operation life exceeds that expected from battery rating.

Application is made simple by inclusion of internal timing resistors and an internal LED current limit resistor.

Timing capacitors will generally be of the electrolytic type, and a small 3V rated part will be suitable for any LED flasher using a supply up to 6V. However, when picking flash rates, it should be remembered that some electrolytics have very broad capacitance tolerances, for example -20% to +100%.

FEATURES

- Operation over one year from one C size flashlight cell
- Bright, high current LED pulse
- Minimum external parts
- Low voltage operation, from just over 1V to 5V
- Low current drain. averages under 0.5 mA during battery life
- Powerful; as an oscillator directly drives an 8Ω speaker

ABSOLUTE MAXIMUM RATINGS

Power Dissipation	500 mW
V+ Voltage	6.4V
Pulse Width	6 ms
Peak LED Current	. 45 mA
Operating Current	. 75 mA
Flash Frequency	1.3 Hz
High Flash Frequency.	1.1 kHz
Operating Temperature Range25 t	o +70°C

TYPICAL APPLICATIONS

Warning Flasher High Voltage Powered

3909 1 2 3 4 1100µF 750Ω

Nominal flash rate: 1.3Hz Average I_{DRAIN} = 2mA Parallel LED's

PIN CONNECTION

TYPICAL CHARACTERISTICS

Drain Current vs Battery Voltage

ESTIMATED BATTERY LIFE (CONTINUOUS 1.5V FLASHER OPERATION)

	T	PE
SIZE CELL	STANDARD	ALKALINE
AA	3 MONTHS	6 MONTHS
с	7 MONTHS	15 MONTHS
D	1.3 YEARS	2.6 YEARS

Note: Estimates are made from our tests and manufacturers data. Conditions are fresh batteries and room temperature. Clad or "leak-proof" batteries are recommended for any application of live months or more. Nickel Cadmium cells are not recommended.

TYPICAL OPERATING CONDITIONS

v+	NORMAL FLASH Hz	CT	R _s 1W	R _{FB}	V+RANGE
6V	2	400µF	1K	1.5K	5-25V
15V	2	180µF	3.9K	1K	13-50V

5V LOW-POWER DTMF RECEIVER

GENERAL DESCRIPTION

The SSI 202 is a complete Dual Tone Multiple Frequency (DTMF) receiver detecting a selectable group of 12 or 16 standard digits. No front-end prefiltering is needed. The only externally required components are an inexpensive 3.58-MHz television "colorburst" crystal (for frequency reference) and a bias resistor. Extremely high system density is made possible by using the clock output of a crystal connected SSI 202 receiver to drive the time bases of additional receivers. The SSI 202 uses a monolithic integrated circuit fabricated with low-power, complementary symmetry MOS (CMOS) processing. It requires only a single low tolerance voltage supply.

The SSI 202 employs state-of-the-art circuit technology to combine digital and analog functions on the same CMOS chip using a standard digital semiconductor process. The analog input is pre-processed by 60-Hz reject and band splitting filters and then hard-limited to provide AGC. Eight bandpass filters detect the individual tones. The digital post-processor times the tone durations and provides the correctly coded digital outputs. Outputs interface directly to standard CMOS circuitry, and are three-state enabled to facilitate bus-oriented architectures.

FEATURES

- NO front-end band-splitting filters required
- Single, low-tolerance, 5-volt supply
- Detects either 12 or 16 standard DTMF digits
- Uses inexpensive 3.579545-MHz crystal for reference
- Excellent speech immunity
- Output in either 4-bit hexadecimal code or binary coded 2 of 8
- Synchronous or handshake interface
- Three-state outputs

ABSOLUTE MAXIMUM RATINGS*

-

* All unused inputs must be connected to V_p or GND as appropriate. Note 1: Operate above 25°C @ 6.25 mw/°C

ANALOG IN

This pin accepts the analog input. It is internally biased so that the input signal may be AC coupled. The input may be DC coupled as long as it does not exceed the positive supply. Proper input coupling is illustrated in Fig. 1.

The SSI 202 is designed to accept sinusoidal input wave forms but will operate satisfactorily with any input that has the correct fundamental frequency with harmonics greater than 20 dB below the fundamental.

CRYSTAL OSCILLATOR

The SSI 202 contains an onboard inverter with sufficient gain to provide oscillation when connected to a low-cost television "color-burst" crystal. The crystal oscillator is enabled by tying XEN high. The crystal is connected between XIN and XOUT. A 1 M Ω 10% resistor is also connected between these pins. In this mode, ATB is a clock frequency output. Other SSI 202's may use the same frequency reference by tying their ATB pins to the ATB of a crystal-connected device. XIN and XEN of the auxiliary devices must then be tied high and low respectively. Ten devices may run off a single crystal-connected SSI 202 .

PIN CONNECTION

MOS (CMOS)

SSI202 276-1303

Block Diagram

HEX/B28

This pin selects the format of the digital output code. When HEX/B28 is tied high, the output is hexadecimal. When tied low, the output is binary coded 2 of 8. The table below describes the two output codes.

	Hexadecimal				Binary Coded 2 of 8			
Digit	D8	D4	D2	D1	D8	D4	D2	D1
1	0	0	0	1	0	0	0	0
2	0	0	1	0	0	0	0	1
3	0	0	1	1	0	0	1	0
4	0	1	0	0	0	1	0	0
5	0	1	0	1	0	1	0	1
6	0	1	1	0	0	1	1	0
7	0	1	1	1	1	0	0	0
8	1	0	0	0	1	0	0	1
9	1	0	0	1	1	0	1	0
0	1	0	1	0	1	1	0	1
*	1	0	1	1	1	1	0	0
#	1	1	0	0	1	1	1	0
А	1	1	0	1	0	0	1	1
В	1	1	1	0	0	1	1	1
С	1	1	1	1	1	0	1	1
D	0	0	0	0	1	1	1	1

SSI202 276-1303

IN1633

When tied high, this pin inhibits detection of tone pairs containing the 1633-Hz component. For detection of all 16 standard digits, IN1633 must be tied low.

OUTPUTS D1, D2, D4, D8 and EN

Outputs D1, D2, D4, D8 are CMOS push-pull when enabled (EN high) and open circuited (high impedance) when disabled by pulling EN low. These digital outputs provide the code corresponding to the detected digit in the format programmed by the HEX/B28 pin. The digital outputs become valid after a tone pair has been detected and they are then cleared when a valid pause is timed.

DV and CLRDV

DV signals a detection by going high after a valid tone pair is sensed and decoded at the output pins D1, D2, D4, D8. DV remains high until a valid pause occurs or the CLRDV is raised high, whichever is earlier.

N/C PINS

These pins have no internal connection and may be left floating.

DETECTION FREQUENCY

SSI 202 TIMING

CTS256AL2

276-1786

CODE-TO-SPEECH CHIP

GENERAL DESCRIPTION

The Code-To-Speech chip set consists of two chips: the SPO256A-AL2 (Cat. No. 276-1784), an allophone-base single chip speech synthesizer, and the CTS256A-AL2, an 8-bit microcomputer programmed with a letter-to-sound based algorithm. This chip set translates English characters into LPC synthesized speech sounds.

The SPO256A-AL2 is a standard allophone chip and is based on the SPO256A speech synthesizer. This synthesizer consists of a 10 or 12 pole second-order cascaded LPC filter, a controller, and a 16-Kbit ROM in which 59 allophones (speech sounds) and five pauses are stored.

The CTS256A-AL2 is a device whose on-board ROM is masked with code-tospeech algorithm. This algorithm converts English text (in the form of standard ASCII characters) into SPO256A-AL2 compatible allophone addresses, using letter-to-sound rules.

This chip set delivers highly recognizable speech output from any peripheral device or computer in a flexible and cost effective manner. It can be configured as a dedicated code-to-speech system, as well as add speech output to a user's program running in this CTS256A-AL2 from off-chip Rom. Such user programs are written in PIC7001 assembly language which is 100% compatible with TMS7001 assembly language.

Eproms can be added to improve the pronunciation of certain proper names, acronyms and technical words as well as to store user programs.

FEATURES:

- Unlimited vocabulary
- Utilizes letter-to-sound rules
- Serial or parallel interface
- Microprocessor available for user code

PIN SELECTABLE CODE-TO-SPEECH OPTIONS:

Refer to TABLE 1.

INPUT BUFFER

DELIMITER

INPUT INTERFACE -Serial port & baud rate vs. Parallel port -Internal RAM vs. External RAM -Any-delimeter vs Carriage-return-only UART PARAMETERS - Program defaults vs 74LS373 selectable (or eprom definable)

FIRMWARE (EXCEPTION-WORD/USER EPROM) **CONTROLLED CODE-TO-SPEECH OPTIONS: (optional)**

Refer to TABLE 2.

- Parallel port decode relocatable
- UART parameters 74LS373 decode relocatable
- UART parameters selectable
- Start & end address of External-Ram relocatable

CODE-TO-SPEECH ALGORITHM FEATURES:

-ESCAPE	"ESC", (1B Hex)	THE ESCAPE-KEY CODE WILL DUMP THE CONTENTS OF THE INPUT AND OUTPUT BUFFERS, AND WILL ALSO SILENCE SPEECH OUTPUT WHICH IS IN PROGRESS.
-BACKSPACE	"<-", (0B Hex)	THE BACKSPACE-KEY CODE ERASES THE INPUT BUFFER ONE CHARACTER AT A TIME, BEGINNING WITH THE LATEST ENTRY.
NOTE: The R/ AL2 au The re	C combination ind nd to PIN 2, 25 of quirement to reset	irectly connected to PIN 14 of the CTS256A- the SPO256A-AL2 acts as a power-on reset. the chip-set is a negative-going pulse which

remains LO for a minimum of 500 microseconds. NOTE: A signal (input or output) that is active-LO is designated by its signal

name followed by an asterisk (*).

CTS256AL2 276-1786

CODE-TO-SPEECH ALGORITHM (Cont'd)

- NOTE: The program default address decode of the SPO256A-AL2's ALD* input is 2000H. It is re-definable via the EXCEPTION-WORD or USER eprom. Refer to TABLE 2.
- NOTE: MSnibble means most significant nibble, where a nibble is half a byte. MSB means most significant byte; LSB means least significant byte. 'X' stands for the MSnibble of the MSB of the two byte address, and can be 1,2,3,4,5,6,7,8,9,A,B,C,D, or E because an eprom may reside from 1000H to E000H.
- NOTE: The term 'delimiter' refers to any punctuation following a word or numerical sequence. These include: , . ; : ! ? spaces and carriagereturns.

CODE-TO-SPEECH ALGORITHM

Upon power-up (or hardware reset) the CTS256A-AL2 determines the system configuration with respect to the following five options:

1- INTERNAL / EXTERNAL RAM SELECTION: (Refer to TABLE 1.)

INTERNAL-RAM mode has an input buffer which accommodates words or phrases that are no greater than 19 characters in length followed by a delimiter; and an output buffer that accommodates an allophone translation of that word or phrase that is no greater than 26 allophone addresses.

Since the translation more often than not results in the output buffer contents consisting of two times that of the input buffer, words no longer than 13 characters in length and numerical sequences of no longer than 4 numbers in length should be used as a rule of thumb. If the output buffer overflows, what has not been spoken yet from the output buffer might be lost, and the BUSY* flag will not necessarily show an input buffer empty status even though the input buffer might be empty. If a translation results in an output buffer overflow, the system reset may have to be used to clear the system.

EXTERNAL-RAM mode can be used to extend the size of the input and output buffers. If no EXCEPTION-WORD or USER eproms are present, the start address default is 3000H. Static RAM can be added in 256 byte contiguous block increments, beginning with a minimum of 512 bytes. The algorithm will find the end address by searching for the first non-RAM location at 256 byte intervals. The search for the end address will not progress beyond 2K bytes.

If an eprom is present, the start and end addresses are re-definable there. Requirements are: minimum start address is 0200H; the start address must begin on a boundary where the LSByte of the address = 00; and without the end address specified in eprom, the maximum valid start address is EE00H.

In any case, 256 bytes are taken for the output buffer; the remainder is the input buffer. (External-Ram used must have an access time of 250 nS or less.)

2- ROM: A search is made from 1000H to E000H is 4K increments for the 5 byte sequence (80H, 48H, 28H, 58H, 85H) which uniquely identifies the presence of an EXCEPTION-WORD or USER eprom. If neither are present, the system options are set to algorithm default values or can be chosen by the Pin selectable options. If only a USER eprom is present, the system options may be re-defined from the USER eprom; refer to APPENDIX-0. If both USER and EXCEPTION-WORD eproms are present or if only an EXCEPTION-WORD eprom is present, the system option may be re-defined from the EXCEPTION-WORD eprom; refer to APPENDIX-A, B. (External-Ram used must have an access time of 300nS or less.)

Exception-Word Eprom(s): (optional)

Exception-word eprom(s) say reside anywhere within the decodeable addresspace of the CTS256A-AL2 from 1000H to E000H, providing its start address falls on a 4K boundary. The code-to-speech initialization routine will search for its existence which is denoted by a unique 5-byte sequence of numbers (80H, 48H, 28H, 58H, 85H). A few other locations in the primary

Exception-Word Eprom(s): (Cont'd)

exception-word eprom are reserved, and must contain specific sequences of numbers; the remainder are user-defined. Additional exception-word eprom(s) contiguous to the primary exception-word eprom contain no reserved locations. Refer to APPENDIX-A, B for the applicable EXCEPTION-WORD EPROM MEMORY MAP.

User-Eprom(s): (optional)

If a USER eprom is accompanied by an EXCEPTION-WORD eprom, it may reside anywhere. If no EXCEPTION-WORD eprom accompanies it then it may reside anywhere from 1000H to E000H providing its start address falls on a 4K boundary; and it must then begin with the sequence 80H, 48H, 28H, 58H, 85H; and also contain other reserved locations. If an EXCEPTION-WORD eprom is present, the USER's program can even reside in an unused portion of the EXCEPTION-WORD eprom. Refer to APPENDIX-D,E for the applicable USER EPROM MEMORY MAP.

Interaction between a USER program and the code-to-speech algorithm must be controlled in an orderly manner, ie; the user must save the processor status before taking control of the processor for execution of any USER code (except for character string loading operations, which is described next:)

To prepare the code-to-speech algorithm to process and speak, the USER program passes the character string it wants spoken into the Accumulator one character at a time, then calls the routine @SAVE which transfers it into the input buffer. After the character string loading has been completed, the USER code can initiate the speech by calling the @SPEAK routine; assuming that a delimiter followed that character string. After the loaded character string is processed and spoken, program control resumes in the hands of the USER program by the Branch @USERCODE instruction.

No registers used by the code-to-speech algorithm may be disturbed by the USER code during character string loading, (except for the Accumulator).

Prior to the USER code executing anything other than character string loading, all registers used by the code-to-speech algorithm as well as the Stack Pointer and STATUS register are to be saved. These registers must be recovered prior to future character string loading operations; or prior to initiating speech.

Because of masked code-to-speech restrictions within the CTS256A-AL2, Interrupt-1* and Interrupt-3* are not USER accessible. Also, input from the serial port into the USER code can be obtained, but restrictions apply.

Refer to APPENDIX-F for a discussion of the sequence of events and subroutines necessary for USER/CODE-TO-SPEECH interactions as described above.

3- Serial / Parallel Input Interface Selection: (Refer to TABLE 1.)

In the parallel mode, ASCII data is latched by an 74LS374, upon receipt of an Active LO data-valid strobe. This strobe also vectors the algorithm to accept the data via Interrupt-3*, PIN 12 of the CTS256A-AL2. The latch's address default is 200H. It is re-definable from EXCEPTION-WORD or USER eprom. (Refer to TABLE 9 for timing requirements of the parallel port.)

In the serial mode, ASCII data is accepted via the CTS256A-AL2 PIN 16, which is a built-in UART that requires a TTL level signal input. The baud rate is selectable at 50,110,300,1200,2400,4800 and 9600. The other UART parameters are set to algorithm default values, or are hardware selectable via an 74LS373 buffer. The buffer address default is 1000H. The UART parameters as well as the baud rate is re-definable from EXCEPTION-WORD or USER eprom. The algorithm default UART values are: Asynchronous, 7 bits/character, 2 stop bits, and no parity.

In either serial or parallel mode, the input buffer is protected from overflow by a hysteresis subroutine which signals the host when the input buffer is full, and when the input buffer is ready for additional input. Hardware handshaking (BUSY*) is provided to accomplish this signaling of input buffer status.

BUSY* is Active-LO. It toggles LO when the input buffer becomes 87.5% full. In this way the host system may use its discretion to complete that transmission or a part thereof. If the input buffer becomes 100% full, the parallel and serial port interrupts are disabled to prevent input buffer overwrite; and the interrupts are not re-enabled until the input buffer full condition has dissipated. BUSY* will toggle hi when the input buffer becomes 50% empty; at which time the interrupts are enabled if they had been disabled by a 100% full condition. (BUSY* is PIN-3 of the CTS256A-AL2 which is a TTL level output capable of sinking 10 mA maximum.)

CTS256AL2 276-1786

CTS256AL2 276-1786

4- Software / Hardware (or Firmware) UART Parameters Selection: (Refer to TABLE 1.)

This hardware option tells the code-to-speech algorithm to use the default UART values, or to find the parameters at the 74LS373 buffer. The buffer address default is 1000H. The UART parameters are re-definable from eprom, but only if the hardware mode is selected via Pin 9 of the CTS256A-AL2.

5- Any-Delimiter / Carriage-Return-Only Selection: (Refer to TABLE 1.)

In the any-delimiter mode, the code-to-speech algorithm will process and speak words or phrases as soon as they are followed by any delimiter. In the carriage-return-only mode, the algorithm will process and speak words or phrases only after a carriage-return is received as a delimiter. The carriage-return-only mode is meant for use with a slow input device such as a terminal, where the user wishes to buffer-up a complete phrase so that it is spoken with fluency. If the carriage-return-only mode is chosen in conjunction with EXTERNAL-RAM, limit to 160 characters the length of the phrase which is entered before the carriage-return is entered. This allows for a two line phrase to be spoken with fluency while insuring that the 256 byte output buffer should not overflow.

After completion of the initialization the phrase "O.K." is spoken to demonstrate that the system is ready for input, then one of the following two paths is taken dependent upon the system configuration:

- 1: In a 'dedicated code-to-speech system' (ie; USER eprom is not present), the algorithm idles as long as the input buffer remains empty. Input is via standard ASCII characters. Processing begins with an alphabetical search of the EXCEPTION-WORD eprom, if it is present. If no exact match for the character string is found, or if an EXCEPTION-WORD eprom is not present, the algorithm employs a letter-to-sound rule table against which main, right, and left context matches are performed. This results in the translation of a particular word into the proper string of allophone addresses necessary for its pronunciation. This list of allophone address is sent to the SP0256A-AL2 after a carriage-return, or after any delimiter—depending on the mode selected.
- 2: In the 'add speech to USER's program' mode (ie; USER eprom is present), control of the processor is relinquished to the USER code immediately after the initialization is complete. The USER code may then execute its own code, may pass character strings into the input buffer memory, or may hand-off processor control to the code-to-speech algorithm to speak any previously loaded character strings. If speech is initiated, control returns to the USER code after the last delimited character string in the input buffer has been processed. Refer to APPENDIX-F.

TABLE 1.

Hardware selectable option pin-outs of CTS256A-AL2:

PIN 6 7 8

0 0 0←PARALLEL INPUT MODE 0 0 1 BAUD 50 0 1 0 BAUD 110 0 1 1 BAUD 300 1 0 0 BAUD 1200 1 0 1 BAUD 2400 1 1 0 BAUD 4800 1 1 1 BAUD 9600 ←

PIN 9

- 0 ← PROGRAM DEFAULT UART VALUES (Asynchronous, 7 bits/ character, 2 stop bits, no parity).
- 1 ← HARDWARE (or FIRMWARE) SELECTED UART VALUES.

PIN 10

- $0 \leftarrow$ INTERNAL-RAM BUFFERS, (20 BYTE INPUT/26 BYTE OUT-PUT).
- 1 ← EXTERNAL-RAM BUFFERS, (1792 BYTE INPUT/256 BYTE OUT-PUT WITH A 2-KBYTE RAM).

CTS256AL2 276-1786

TABLE 1. Con't.

PIN 11

 $0 \leftarrow$ CARRIAGE-RETURN-ONLY DELIMITER. $1 \leftarrow$ ANY DELIMITER.

PIN 03 "BUSY\$" (Input buffer flag is a TTL level output); for RS232 compatibility use MC1488 Line Driver or equiv.

- $0 \rightarrow$ INPUT BUFFER IS > = 87.5% FULL.
- $1 \rightarrow$ INPUT BUFFER IS < = 50.0% EMPTY.

PIN 16 → UART RECEIVER (Serial input is a TTL level input); for RS232 compatibility use MC1489 Line Receiver or equiv.

NOTE: 0 implies TLL LO level; 1 implies TTL HI level. \leftarrow implies input; \rightarrow implies output.

A typical connection to a computer with an RS232 interface:

COMPUTER CODE-TO-SPEECH CHIP-SET protective GND ↔ signal GND (Circuit ground). signal GND ↔ signal GND (Circuit ground). Clear To Send (CTS)← Request To Send (RTS) = CTS256A-ALs's PIN 3 (BUSY\$).

Transmitter's Line Driver →CTS256A-AL2 UART's Line Receiver.

TABLE 2. NEW PARAMETERS.

X009	FF	NUMBER OF BYTES OF 50% OF EXTERNAL INPUT
VooA		BUFFER (MSB)
XUUA	FF .	NUMBER OF BYIES OF 50% OF EXTERNAL INPUT
VooD	PP	BUFFEK (LSB)
YOOR	FF	NUMBER OF BYTES OF 12.5% OF EXTERNAL INPUT
VOOC	FF	NUMBER OF DYTES OF 12 50/ OF EXTERNAL INDUT
AUUC	ГГ	NUMBER OF DITES OF 12.3% OF EATERNAL INPUT
YOOD	FF	EVTEDNAL DAM CTART ADDRESS (MCR) 200 poto 2.2
YOOF	FF	EXTERNAL RAW START ADDRESS (MSD) see hole 2.5
XOOL	FF	EXTERNAL RAM FND ADDRESS 100H (MSB) see note 2.3
X010	FF	EXTERNAL RAM END ADDRESS-100H (ISB) see note 2.3
X011	FF	EXTERNAL RAM START ADDRESS-1 (MSB) see note 2.3
X012	FF	EXTERNAL RAM START ADDRESS-1 (ISB) see note 2.3
X012	FF	EXTERNAL RAM FND ADDRESS-FEH (MSB) see note 2.3
X013	FF	EXTERNAL RAM FND ADDRESS-FFH (ISB) see note 2.3
X014	FF	EXTERNAL RAM END ADDRESS + 1 (MSB) see note 2.3
X016	FF	EXTERNAL RAM END ADDRESS + 1 (LSB) see note 2.3
X017	FF	ADDRESS DECODE OF SPO256A-AL2'S ALDS (MSB) SPE
11017		note 2.4
X018	FF	ADDRESS DECODE OF SPO256A-AI 2's AI D\$ (I SB) see note
11010	11	2 4
X019	FF	ADDRESS DECODE OF 74LS374 PARALLEL PORT LATCH
11010		(MSB)
X01A	FF	ADDRESS DECODE OF 74LS374 PARALLEL PORT LATCH
-		(LSB)
X01B	FF	see note 2.1
X01C	FF	TOTAL NUMBER OF BYTES IN INPUT BUFFER (MSB)
X01D	FF	TOTAL NUMBER OF BYTES IN INPUT BUFFER (LSB)
X01E	FF	see note 2.1
X01F	FF	see note 2.1
X020	FF	SERIAL PORT REGISTER (see table 5) see note 2.5
X021	FF	SERIAL PORT CONTROL REGISTER (see table 6) see note
		2.5
X022	FF	SERIAL PORT TIMER DATA REGISTER (see table 6) see
		note 2.5
1		
-	YOU	R EXCEPTION-WORD OR USER EPROM CAN RESIDE ANY-
	WHE	ERE FROM 1000H TO E000H PROVIDING IT BEGINS ON A
	4K I	BOUNDARY WHERE $X = 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, or E$. (The
	least	significant 3 nibbles of the address must remain as shown.)

CTS256AL2 276-1786

NOTE 2.2	1	THESE LOCATIONS MUST BE FF, (THEY ARE NOT USER	
NOTE 2.2	2	TO MAINTAIN ANY PARAMETER AT ITS DEFAILT VALUE	
		LOAD THAT LOCATION WITH FFH.	
NOTE 2.3	3	IF ANY OF THE EXTERNAL RAM BUFFER PARAMETERS	
		ARE REDEFINED HERE, ALL OF THEM MUST BE REDE-	
NOTE 2.4	4	NO MATTER WHAT ADDRESS IS CHOSEN FOR ALDS. THAT	
		ADDRESS THRU THAT ADDRESS + 3FH IS RESERVED FOR	
NOTE	-	SPO256A-AL2 ADDRESSING.	
NOTE 2.0	5	FINED HERE, ALL OF THEM MUST BE REDEFINED HERE	
NOTE 2.0	6	H, AS IN 100H REFERS TO HEXADECIMAL NOTATION.	
NOTE 2.2	7	A NIBBLE IS HALF OF A BYTE, OR 4 BITS.	
TABLE	3	SAMPLE OF ASSEMBLED AL PHARETIZED	
		EXCEPTION-WORD INDEX	
X0A3	X1	MSB OF POINTER TO START OF EXCEPTION WORD	
		BEGINNING WITH "A"	
X0A4	93	LSB OF POINTER TO START OF EXCEPTION-WORD	
X0A5	X1	BEGINNING WITH "A" MSB OF POINTER TO START OF EXCEPTION MODE	
ALOI LO		BEGINNING WITH "B"	
X0A6	A8	LSB OF POINTER TO START OF EXCEPTION-WORD	
X0A7	X1	BEGINNING WITH "B" MSB OF POINTER TO START OF EXCEPTION WORD	
		BEGINNING WITH "C"	
X0A8	A9	LSB OF POINTER TO START OF EXCEPTION-WORD	
XOA9	X1	MSB OF POINTER TO START OF EXCEPTION WORD	
		BEGINNING WITH "D"	
X0AA	B1	LSB OF POINTER TO START OF EXCEPTION-WORD	
XOAB	X1	MSB OF POINTER TO START OF EXCEPTION WORD	
		BEGINNING WITH "E"	
X0AC	B2	LSB OF POINTER TO START OF EXCEPTION-WORD	
XOAD	X1	MSB OF POINTER TO START OF EXCEPTION-WORD	
NAT		BEGINNING WITH "F"	
XUAE	B 3	LSB OF POINTER TO START OF EXCEPTION-WORD BEGINNING WITH "F"	
XOAF	X1	MSB OF POINTER TO START OF EXCEPTION-WORD	
VODO	DA	BEGINNING WITH "G"	
AUDU	B4	BEGINNING WITH "G"	
X0B1	X1	MSB OF POINTER TO START OF EXCEPTION-WORD	
YOR2	D 1	BEGINNING WITH "H"	
AUDZ	EI	BEGINNING WITH "H"	
X0B3	X1	MSB OF POINTER TO START OF EXCEPTION-WORD	
XOB4	F 2	BEGINNING WITH "I"	
NUD4	154	BEGINNING WITH "I"	
X0B5	X2	MSB OF POINTER TO START OF EXCEPTION-WORD	
X0B6	ОП	BEGINNING WITH "J"	
nobo	OD	BEGINNING WITH "I"	
X0B7	X2	MSB OF POINTER TO START OF EXCEPTION-WORD	
X0B8	OF	LSB OF POINTER TO START OF EXCEPTION MORE	
		BEGINNING WITH "K"	
X0B9	X2	MSB OF POINTER TO START OF EXCEPTION-WORD	
XOBA	OF	LSB OF POINTER TO START OF EXCEPTION WORD	
Vone		BEGINNING WITH "L"	
XOBB	X2	MSB OF POINTER TO START OF EXCEPTION-WORD	

CTS256AL2 276-1786

TABLE	3. (Co	ont'd)
X0BC	1B	LSB OF POINTER TO START OF EXCEPTION-WORD BEGINNING WITH "M"
X0BD	X2	MSB OF POINTER TO START OF EXCEPTION-WORD BEGINNING WITH "N"
XOBE	1C	LSB OF POINTER TO START OF EXCEPTION-WORD BEGINNING WITH "N"
XOBF	X2	MSB OF POINTER TO START OF EXCEPTION-WORD BEGINNING WITH "O"
X0CO	1D	LSB OF POINTER TO START OF EXCEPTION-WORD BEGINNING WITH "O"
X0C1	X2	MSB OF POINTER TO START OF EXCEPTION-WORD BEGINNING WITH "P"
X0C2	1E	LSB OF POINTER TO START OF EXCEPTION-WORD BEGINNING WITH "P"
X0C3	X2	MSB OF POINTER TO START OF EXCEPTION-WORD BEGINNING WITH "O"
X0C4	2D	LSB OF POINTER TO START OF EXCEPTION-WORD BEGINNING WITH "O"
X0C5	X2	MSB OF POINTER TO START OF EXCEPTION-WORD BEGINNING WITH "R"
X0C6	2E	LSB OF POINTER TO START OF EXCEPTION-WORD BEGINNING WITH "R"
X0C7	X2	MSB OF POINTER TO START OF EXCEPTION-WORD
X0C8	2F	LSB OF POINTER TO START OF EXCEPTION-WORD
X0C9	X2	MSB OF POINTER TO START OF EXCEPTION-WORD
X0CA	30	LSB OF POINTER TO START OF EXCEPTION-WORD
X0CB	X2	MSB OF POINTER TO START OF EXCEPTION-WORD
X0CC	3D	LSB OF POINTER TO START OF EXCEPTION-WORD
X0CD	X2	MSB OF POINTER TO START OF EXCEPTION-WORD
X0CE	5A	LSB OF POINTER TO START OF EXCEPTION-WORD
X0CF	X2	MSB OF POINTER TO START OF EXCEPTION-WORD
X0DO	5B	LSB OF POINTER TO START OF EXCEPTION-WORD
X0D1	X2	MSB OF POINTER TO START OF EXCEPTION-WORD
X0D2	64	LSB OF POINTER TO START OF EXCEPTION-WORD
X0D3	X2	MSB OF POINTER TO START OF EXCEPTION-WORD
X0D4	65	LSB OF POINTER TO START OF EXCEPTION-WORD
X0D5	X2	MSB OF POINTER TO START OF EXCEPTION-WORD BEGINNING WITH "7"
X0D6	6F	LSB OF POINTER TO START OF EXCEPTION-WORD
X0D7	X2	MSB OF POINTER TO START EXCEPTION-WORD
X0D8	70	LSB OF POINTER TO START EXCEPTION-WORD
Ť	Ť	BEGINNING WITH NOMBER OF FONCTORTION
		_The least significant nibble of the MSB and the entire LSB address locations will vary with a different set of exception
		words; X = 1,2,3,4,5,6,7,8,9,A,B,C,D,or E.
	YOU	R EXCEPTION-WORD EPROM CAN RESIDE ANYWHERE
	FRO	M 1000H TO E000H PROVIDING IT BEGINS ON A 4K
	signi	ficant 3 nibbles of the address must remain as shown.)

CTS256/	AL2 276-1786	
TABLE 4. SA X193 13 6E 24 A X196 B9 13 5A 0 X1A0 00 01 41 2	AMPLE OF ASSEMBLED ENCODED EXCEPTION-WORDS AA:DB 19,110,36,185,19,90,11,1,33,19,0,18,15,0,1,65,34,39,20,141 0B 01 21 13 00 12 0F 22 27 14 8D	
X1A7 FF	;<[ANDY]< = [AE NN1 PA2 DD2 IY PA1 DH1 AX PA1 PA2 GG3 RR2 EY TT2] ANDY-THE-GREA DB 255	T
X1A8 FF	, BB:DB 255 ;	
X1A9 13 61 B0 X1AC 21 6A 14	C: DB 19,97,176,33,106,20,137; <[CAP]A = [KK1 EY PP]	CAPABILITY
X1B0 FF X1B1 FF	DB 255	
X1B2 FF	: E: DB 255	
X1B3 FF	; F: DB 255	
X1B4 13 E9 13 X1B7 4A 07 0B X1C1 27 1F 10	; 6: DB 19,233,19,74,7,11,51,62,0,12,11,55,13,39,31,16,7,11,2,141 33 3E 00 0C 0B 37 0D 07 0B 02 BD ;<[GI]< = [JH EH NN1 ER1 EL PA1 IM NN1 SS TT2 RR2 UW2 MM EH NN1 PA3 TT2] ;GENERAL INSTRUMENT	
X1C8 13 E9 2D X1CB 21 29 2C X1D5 0C 0B 37 X1DF 8D	DB 19,233,45,33,41,44,19,74,7,11,51,62,0,12,11,55,13,39,31,16,7,11,2,141 13 4A 07 0B 33 3E 00 0D 27 1F 10 07 0B 02	
X1E0 FF	;<[GI][MAIL< = []H EH NN1 ER1 EL PA1 IH NN1 SS TT2 RR2 UW2 MM EH NN1 PA3 TT2] DB 255	
X1E1 FF	H: DB 255	
X1E2 13 E4 13 X1E5 46 00 21 X1EF 02 2A 14	I: DB 19,228,19,70,0,33,7,11,2,13,12,40,12,2,42,20,37,15,139; <[ID] < = [AY PA1 07 0B 02 0D 0C 2B 0C 25 0F 8B	
X1F5 13 73 2C X1FB A5 13 46 X1FD 13 73 2C	<pre>;DD2 EH NN1 PA3 TT2 IH FF IH PA3 KK1 EY SH AX NN1) ID] DB 19,115,44,165,19,70,1,190; <[ISLE] < = [AY PA2 EL] 01 BE DB 19,115,44,33,46,164,19,70,0,45,26,11,1,21,1; <[ISLAND] < = [AYPA2ELAENN1DD1]</pre>	ENTIFICATION ISLE
X200 21 2E A4 X20A 15 01 X20C FF	13 46 00 2D 1A 0B 01 DB 255	
X20D FF	J: DB 255	
X20E FF	K: DB 255	
X20F 13 69 36 X212 25 A4 13 X21A FF	L: DB 19,105,54,37,164,19,109,12,35,3,149; < [LIVED] < = [LL IH VV PA4 DD1] 6D 0C 23 03 95 DB 255	LIVED
X21B FF	M: DB 255	
X21C FF	N: DB 255	
X21D FF	O: DB 255	
X21E 13 75 32 X221 30 2F 33 X22B B7	P: DB 19,117,50,48,47,51,165,19,73,51,9,15,55,183; < [PURPOSE] < = [PPER1PPAXSSSS] A5 13 49 33 09 0F 37	
X22C FF	DB 255 ;	
X22D FF	Q: DB 255	
X22E FF	R: DB 255	
X22F FF	S: DB 255 ;	

							С	TS25	6AL2	276-1786
TABLE 4. (Co	ont'd)									
X230 13 6F 34 X233 21 AC 13 X23C FF	T: DB 19,111,52,33,172,19,77,5 4D 35 0D 00 0F BE DB 255	3,13,0,15,190;	<[TOTA]	L]< = [TT	2 OW T	T1 PA1	AX EL]			
X23D 13 73 25 X240 32 29 A4 X24A 00 21 07 0 X254 2A 14 25 X257 0F BB	U: DB 19,115,37,50,41,164,19,1 13 71 16 2B 33 01 06 DB 02 0D 0C 2B 0C 02 DB 15,139;<[USERID]< = [13,22,43,51,1, YY1 UM1 ZZ	6,0,33,7,1 ER1 PA1	1,2,13,12,4 AY PA1	40,12,2,4 DD2 EH	42,20,37 I NN1 P	A3 TT2 I	H FF IH		
X259 FF	;PA3 KK1 EY SH . DB 255	AX NN1]								
X25A FF	V: DB 255									
X25B 13 65 07 X25E 32 A5 6E X263 FF X264 FF	; W: DB 19,101,7,50,165,110,19,1 13 B4 DB 255 X: DB 255	80			;<[WE'	'RE] = [V	VW IY E	R2]		WE'RE
X265 13 6F 35 X268 07 32 A5 X26E FF	, Y: DB 19,111,53,7,50,165,19,89 13 59 BA DB 255	,186	;<[YOU	J'RE]< =	[YY2 OR]				YOU'RE
X26F FF	, Z: DB 255									
X270 13 CF 13 X273 59 3A 01 X27D 00 02 2A X281 0B 01 3F X284 13 00 37 3 X2BE 0B 00 2E X29B 0D 0F 02 X29C 00 0F 23 X29F 00 14 00	NUMORPUN: DB 19,207,19,89 10 07 37 37 0C 01 0A 1A DB 11,1,63,19,0,55,55,2,9,53 37 02 09 35 02 2A 07 0C 1D 00 12 0F 00 02 32 DB 0,15,35,0,20,0,2,42,19,12 02 2A 13 80 ;<[/]< = [YY1 OR PA2 MM EH ;PAI SS SS PA3 PP OW PA3 K ;TT2 AX PA3 CH PA1 AX VV ;WITH THE TOUCH OF A KE	1,58,1,16,7,55, 3,2,42,7,11,0,4 28 4 SS SS IH P/ K1 EM NN1 1 PA1 EY PA1 Y	55,12,1,10 6,12,29,0, A2 JH PA1 PA1 WW PA2 KK1),0,2,42,26 18,15,0,2, 18,15,0,2, 18,15,0,2, 18,15,0,2, 18,15,0,2, 18,15,0,2,2 18,15,0,2,42,26 18,15,0,2,42,26 18,15,0,2,42,26 18,15,0,2,42,26 18,15,0,2,42,26 18,15,0,2,42,26 18,15,0,2,42,26 18,15,0,2,42,26 18,15,0,2,42,42,42 18,15,0,2,42,42,42 18,15,0,2,42,42,42 18,15,0,2,42,42,42 18,15,0,2,42,42,42 18,15,0,2,42,42,42 18,15,0,2,42,42,42 18,15,0,2,42,42,42 18,15,0,2,42,42,42 18,15,0,2,42,42,42,42 18,15,0,2,42,42,42,42 19,12,12,12,42,42,42,42,42,42,42,42,42,42,42,42,42	13,15,2, 1 AE NR 1 DH1 YOU'RE	50 V1 PA1 AX PA1 MESSA	PA2 BB2 PA3 AGE CAN	IY BE SPOR	KEN	
X2A6 C6 5A 01	; B DB 198,90,11,21,128	;[&] = [AE N		AND						
X2A9 15 80 X2AB FF	DB 255	;MUST EN	DEACH	CATEGO	RY WIT	'H [].				
WHERE will vary	WHERE X = 1,2,3,4,5,6,7,8,9,A,B,C,D, or E. (The least significant 3 nibbles of the address will vary with a different set of exception words.)									

FOR TYPICAL APPLICATIONS USE: MOTOROLA PROTOCOL, ASYNCHRONOUS COMMUNICATION, 7 BITS/CHARACTER, and COMMUNICATION MODE; THE NUMBER OF STOP BITS AND PARITY MODE REMAIN UP TO THE USER.

TABLE 6. SERIAL PORT CONTROL REGISTER / TIMER REGISTER

Asynchronous Baud Rate = 2.5 MH:

$$64(PL + 1)(TL + 1)$$

Isosynchronous Baud Rate = 2.5 MH:

$$4(PL + 1)(TL + 1)$$

where: PL = prescale latch valueTL = timer latch value

Example: To program the serial port to operate at 300 baud in the asynchronous mode, the prescaler value is set to 0, and the timer latch value to 81H.

CTS256AL2 276-1786

TABLE 7.	ASCII CHARACTER SET ENCODEL) VALUES		· · · · · · · · · · · · · · · · · · ·
LETTER	ENCODED VALUE (shown in Hexadecimal).	LETTER	ENCODED V	ALUE (shown in Hexadecimal).
A	21	N	2E	
В	22	0	2F	
С	23	Р	30	
D	24	Q .	31	
Е	25	R	32	
F	26	S	33	
G	27	Т	34	
Н	28	U	35	
Ι	29	V.	36	
I	2A	W	37	
ĸ	2B	x	38	
L	2C	Ÿ	39	
М	2D	7	3.4	

TABLE 8. ALLOPHONE ADDRESS ENCODED VALUES (shown in Hexdecimal).

ENCODED		SAMPLE		ENCODED		SAMPLE	
VALUE	ALLPHONE	WORD	DURATION (as)	VALUE	ALLPHONE	WORD	DURATION (as)
00	PA1	PAUSE	10	20	AW	OUt	250
01	PA2	PAUSE	30	21	DD2	Do	80
02	PA3	PAUSE	50	22	GG3	wiG	120
03	PA4	PAUSE	100	23	VV	Vest	130
04	PA5	PAUSE	200	24	GG1	Guest	80
05	OY	bOY	290	25	SH	SHip	120
06	AY	skY	170	26	ZH	aZUre	130
07	EH	End	50	27	RR2	bRain	80
08	KK3	Coab	80	28	FF	Food	110
09	PP	Pow	150	29	KK2	sKy	140
0A	JH	dodGe	400	2A	KK1	Can't	120
OB	NN1	thiN	170	2B	ZZ	Zoo	150
OC	IH	sIt	50	2C	NG	aNchor	200
0D	TT2	То	100	2D	LL	Lake	80
OE	RR1	Rural	130	2E	WW	Wool	140
OF	AX	sUceed	50	2F	XR	repaIR	250
10	MM	Milk	180	30	WH	WHig	150
11	TT1	parT	80	31	YY1	Yes	90
12	DH1	THey	140	32	CH	CHurch	150
13	IY	sEE	170	33	ER1	fIR	110
14	EY	bEIge	200	34	ER2	fIR	210
15	DD1	coulD	50	35	OW	bEAU	170
16	UW1	tO	60	36	DH2	THey	180
17	AO	OUght	70	37	SS	veST	60
18	AA	hOt	60	38	NN2	No	140
19	YY2	Yes	130	39	HH2	Hoe	130
1A	AE	hAt	80	3A	OR	stORe	240
1B	HH1	He	90	3B	AR	alARe	200
1C	BB1	Business	40	3C	YR	cleAR	250
1D	TH	THin	130	3D	GG2	Got	80
1E	UN	bOOk	70	3E	EL	saddLE	140
1F .	UW2	fOOd	170	3F	BB2	Business	60

TABLE 9. PARALLEL PORT TIMING REQUIREMENTS:

SETUP TIME, BEFORE DATA CLOCK LO TO HI TRANSITION: MIN. 20 nS. HOLD TIME, BEFORE DATA CLOCK LO TO HI TRANSITION: MIN. 10 nS. WIDTH OF CLOCK LO: MIN. 500 nS.

HOLD OFF TIME, FROM DATA STROBE HI TO LOW TO HI, UNTIL NEXT DATA STROBE HI TO LOW: MIN. 450 uS.

NOTE: The addition of an 74LS74 Flip-Flop as shown on the schematic can be used for parallel port latch handshaking using the Active-LO LATCH-BUSY\$ output. LATCH-BUSY\$ is LO when the latch is full, and it is HI when the latch is empty and available for the next character to be strobed in.

CTS256AL2 276-1786

APPENDIX-A

Exception-Word Eprom Map (For use without USER eprom present) NOTE: ENCAPSULATED SEQUENCES ARE USER-DEFINED, REFER TABLES 2,3, AND 4.

0 1 2 3 4 5 6 7 8 9 A B C D E F X000 80 48 28 58 85 E0 35 E0 31 FF FF FF FF FF FF FF FF ←sample NEW PARAMETERS. (see table 2). X020 FF FF FF 1E 1F 20 21 28 29 24 25 22 23 2A 2B 26 ←NEW PARAMETER INITIALIZATION X030 27 2C 2D 2E 2F 32 33 34 35 36 E0 65 78 02 31 BE ROUTINE. X040 F1 43 C5 AAX0 09 2D FF E2 1E B8 AAX0 23 D5 12 The MSnibble of the following locations X050 D0 13 B9 9B 13 C3 AA X0 09 2D FF E2 0B B8 AA X0 from the NEW PARAMETER INITIALIZATION X060 23 D5 12 D0 13 B9 9B 13 5D 16 E6 E9 C3 AA X0 09 X070 2D FF E2 14 A2 40 11 82 11 A2 15 11 C3 AA X0 09 ROUTINE are user defined also: X080 82 15 C3 AAX0 09 82 14 98 29 03 98 2B 07 22 20 X044,X04C,X057,X05F,X06E,X07E,and X084; X090 9B 03 BE F7 2B 9B 03 05 98 07 09 98 03 19 8C F1 where X = 1,2,3,4,5,6,7,8,9,A,B,C,D,or E. X0A0 00 E0 36 X1 93 X1 AB X1 A9 X1 B1 X1 B2 X1 B3 X1 ←sample ALPHABETIZED X0B0 B4 X1 E1 X1 E2 X2 0D X2 0E X2 0F X2 1B X2 1C X2 EXCEPTION-WORD X0C0 1D X2 1E X2 2D X2 2E X2 2F X2 30 X2 3D X2 5A X2 INDEX, where X = 1,2,3,4,5,6,7,8,9,A,B,C,D,or E. (see table 3). X0D0 5B X2 64 X2 65 X2 6F X2 70 D8 02 D8 03 98 03 11 ← EXCEPTION-WORD ROUTINE. X0E0 BE F7 4B 8E F7 0F 77 01 0A 05 74 80 0B E0 03 73 X0F0 7F 0B BE F3 AF 76 20 0A 0E 52 34 AA X0 A3 D0 14 The MSnibble of the following locations X100 AAX0 A4 D0 15 E0 0F C5 2A 41 2C 02 AAX0 A3 D0 from the EXCEPTION-WORD ROUTINE are user X110 14 AAX0 A4 D0 15 52 01 BE F4 88 8E F4 C2 76 10 defined also: X0FC,X101,X10D,and X112; X120 0A 4D 2D FF E2 60 98 11 1D 73 BF 0A 8E F5 64 76 where X = 1,2,3,4,5,6,7,8,9,A,B,C,D,or E. X130 10 0A 3C 8E F4 7E 74 40 0A 8E F5 64 76 10 0A 42 X140 48 37 34 79 00 35 D5 37 73 FD 0B 52 02 8E F4 88 X150 8E F4 9E 98 0F 03 98 03 11 8E F7 4B 77 80 0B 0A X160 DB 39 8E F3 47 C9 C9 8C F1 36 C9 C9 8C F3 F4 D3 X170 15 E7 02 D3 14 52 02 8E F4 88 72 01 37 73 FD 0B X180 E0 99 52 03 E0 F1 D9 03 D9 02 D5 37 73 FD 0B 8C X190 F3 EE FF 13 6E 24 B9 13 5A 0B 01 21 13 00 12 0F ←sample ENCODED EXCEPTION-WORDS. X1A0 00 01 41 22 27 14 8D FF FF 13 61 B0 21 6A 14 89 X1B0 FF FF FF FF FF 13 E9 13 4A 07 0B 33 3E 00 0C 0B 37 (see table 4). X1C0 0D 27 1F 10 07 0B 02 BD 13 E9 2D 21 29 2C 13 4A X1D0 07 0B 33 3E 00 0C 0B 37 0D 27 1F 10 07 0B 02 8D X1E0 FF FF 13 E4 13 46 00 21 07 0B 02 0D 0C 28 0C 02 X1F0 2A 14 25 0F BB 13 73 2C A5 13 46 01 BE 13 73 2C (see APPENDIX-C X200 21 2E A4 13 46 00 2D 1A 0B 01 15 01 FF FF FF 13 for discussion X210 69 36 25 A4 13 6D 0C 23 03 95 FF FF FF FF 13 75 of encoding scheme.) X220 32 30 2F 33 A5 13 49 33 09 0F 37 B7 FF FF FF FF X230 13 6F 34 21 AC 13 4D 35 0D 00 0F BE FF 13 73 25 X240 32 29 A4 13 71 16 2B 33 01 06 00 21 07 0B 02 0D OC 28 OC 02 2A 14 25 OF BB FF FF 13 65 07 32 A5 X250 X260 6E 13 B4 FF FF 13 6F 35 07 32 A5 13 59 BA FF FF X270 13 CF 13 59 3A 01 10 07 37 37 0C 01 0A 00 02 2A 1A 0B 01 3F 13 00 37 37 02 09 35 02 2A 07 0B 00 X280 X290 2E 0C 1D 00 12 0F 00 02 0D 0F 02 32 00 0F 23 00 X2A0 14 00 02 2A 13 80 C6 5A 0B 15 80 FF 0 1 2 3 4 5 6 7 8 9 A B C D E F YOUR EXCEPTION-WORD EPROM CAN RESIDE ANYWHERE FROM 1000H TO E000H, PROVIDING IT BEGINS ON A 4K BOUNDARY WHERE X = 1,2,3,4,5,6,7,8,9,A,B,C,D,or E.

CTS256AL2 276-1786

APPENDIX-B

Exception-Word Eprom Map (For use without USER eprom present) NOTE: ENCAPSULATED SEQUENCES ARE USER-DEFINED, REFER TABLES 2,3, AND 4.

0 1 2 3 4 5 6 7 8 9 A B C D E F X000 80 48 28 58 85 E0 35 E0 31 FF FF FF FF FF FF FF FF ←sample NEW PARAMETERS. (see table 2). X020 FF FF FF 1E 1F 20 21 28 29 24 25 22 23 2A 2B 26 ←NEW PARAMETER **INITIALIZATION** X030 27 2C 2D 2E 2F 32 33 34 35 36 E0 65 78 02 31 BE ROUTINE. X040 F1 43 C5 AA X0 09 2D FF E2 1E B8 AA X0 23 D5 12 The MSnibble of the following locataions from the NEW PARAMETER INITIALIZATION X050 D0 13 B9 9B 13 C3 AA X0 09 2D FF E2 0B B8 AA X0 X060 23 D5 12 D0 13 B9 9B 13 5D 16 E6 E9 C3 AA X0 09 ROUTINE are user defined also: X070 2D FF E2 14 A2 40 11 82 11 A2 15 11 C3 AA X0 09 X044,X04C,X057,X05F,X06E,X07E,and X084; X080 82 15 C3 AAX0 09 82 14 98 29 03 98 2B 07 22 20 where X = 1,2,3,4,5,6,7,8,9,A,B,C,D,or E. X090 9B 03 BE F7 2B 9B 03 05 98 07 09 98 03 19 8C MS ←(see note 1 below). X0A0 LS E0 36 X1 93 X1 AB X1 A9 X1 B1 X1 B2 X1 B3 X1 ←sample ALPHABETIZED X0B0 B4 X1 E1 X1 E2 X2 0D X2 0E X2 0F X2 1B X2 1C X2 **EXCEPTION-WORD** X0C0 1D X2 1E X2 2D X2 2E X2 2F X2 30 X2 3D X2 5A X2 INDEX, where X = 1,2,3,4,5,6,7,8,9,A,B,C,D,or E. (see table 3) X0D0 5B 82 64 82 65 82 6F 82 70 D8 02 D8 03 98 03 11 ← EXCEPTION-WORD ROUTINE. X0E0 BE F7 4B 8E F7 0F 77 01 0A 05 74 80 0B E0 03 73 The MSnibble of the following locations X0F0 7F 0B BE F3 AF 76 20 0A 0E 52 34 AA 80 A3 D0 14 X100 AA 80 A4 D0 15 E0 0F C5 2A 41 2C 02 AA 80 A3 D0 from the EXCEPTION-WORD ROUTINE are user defined also: X0FC,X101,X10D,and X112; X110 14 AA80 A4 D0 15 52 01 BE F4 88 8E F4 C2 76 10 X120 0A 4D 2D FF E2 60 98 11 1D 73 BF 0A BE F5 64 76 where X = 1,2,3,4,5,6,7,8,9,A,B,C,D,or E. X130 10 0A 3C 8E F4 7E 74 40 0A 8E F5 64 76 10 0A 42 X140 48 37 34 79 00 33 D5 37 73 FD 0B 52 02 8E F4 88 X150 8E F4 9E 98 0F 03 98 03 11 8E F7 4B 77 80 0B 0A X160 DB 39 BE F3 47 C9 C9 8C F1 36 C9 C9 8C F3 F4 D3 X170 15 E7 02 D3 14 52 02 BE F4 88 72 01 37 73 FD 0B X180 E0 99 52 03 E0 F1 D9 03 D9 02 D5 37 73 FD 0B 8C X190 F3 EE FF 13 6E 24 B9 15 5A 0B 01 21 13 00 12 0F ←sample ENCODED **EXCEPTION-WORDS.** X1A0 00 01 41 22 27 14 8D FF FF 13 61 B0 21 6A 14 89 X1B0 FF FF FF FF FF 13 E9 13 4A 07 0B 33 3E 00 0C 0B 37 (see table 4). X1C0 0D 27 1F 10 07 0B 02 8D 13 E9 2D 21 29 2C 13 4A X1D0 07 0B 33 3E 00 0C 0B 37 0D 27 1F 10 07 0B 02 BD X1E0 FF FF 13 E4 13 46 00 21 07 0B 02 0D 0C 2B 0C 02 X1F0 2A 14 25 0F BB 13 73 2C A5 13 46 01 BE 13 73 2C X200 21 2E A4 13 46 00 2D 1A 0B 01 15 01 FF FF FF 13 (see APPENDIX-C X210 69 36 25 A4 13 6D 0C 23 03 95 FF FF FF FF 13 75 for discussion X220 32 30 2F 33 A5 13 49 33 09 0F 37 B7 FF FF FF FF of encoding scheme). X230 13 6F 34 21 AC 13 4D 35 0D 00 0F BE FF 13 73 25 X240 32 29 A4 13 71 16 2B 33 01 06 00 21 07 0B 02 0D X250 0C 28 0C 02 2A 14 25 0F BB FF FF 13 65 07 32 A5 X260 6E 13 B4 FF FF 13 6F 35 07 32 A5 13 59 BA FF FF X270 13 CF 13 59 3A 01 10 07 37 37 0C 01 0A 00 02 2A X280 1A 0B 01 3F 13 00 37 37 02 09 35 02 2A 07 0B 00 X290 2E 0C 1D 00 12 0F 00 02 0D 0F 02 32 00 0F 23 00 X2A0 14 00 02 2A 13 80 C6 5A 0B 15 80 FF NOTE: 1. APPENDIX-B is the same as APPENDIX-A, except for two address. These are X09F and X0A0 (MSB and LSB respec-

tively, labeled MS and LS above). Place the origin of the MAIN-CONTROL-PROGRAM (see APPENDIX-F) in these locations so that program control will transfer to the user's code at the appropriate time.

CTS256AL2 276-1786

APPENDIX-C

Exception-Word Encoding Scheme

To store a unique word or symbol and its corresponding allophone address string in an efficient and flexible manner, the following encoding format was derived:

<[encoded word or symbol]< = [encoded allophone address(es)]

where: < equals 13H. [equals 40H.] equals 80H.

The first and last byte is 13H. This informs the code-to-speech algorithm that the word or symbol is not a prefix or suffix.

If the word or symbol is an individual letter, then the representation of it between the brackets is an FFH; this includes the value of the left and right brackets.

Otherwise:

- (1) The first letter in the word or symbol is always to be ignored.
- (2) The next letter in the word is represented by the value of the letter from TABLE-7, plus the value of the left bracket "[" which is 40H.
- (3) The following letter(s), if and only if it is not the last letter in the word or symbol, is represented solely by its value from TABLE-7.
- (4) The last letter in the word or symbol is represented by the value of the letter from TABLE-7, plus the value of the right bracket "]" which is 80H.

The allophone address string is encoded in a similar manner:

If only one allophone is used for the pronunciation, it is represented by its value from TABLE-6, plus the value of the right "[" and left "]" brackets which are 40H and 80H respectively.

Otherwise:

(1) The first allophone is represented by its value from TABLE-8, plus the value of the left bracket "[" which is 40H.

(2) The following allophone(s), if and only if it is not the last allophone in the string, is represented by its value from TABLE-8.

(3) The last allophone is represented by its value from TABLE-8 plus the value of the right bracket "]" which is 80H.

Example: To encode "Au" to pronounce as "GOLD"

<[Au]< = [GG2 0W LL DD1]

13,F5,13, 7D, 35,2D,95 ← This line is ready to store in EXCEPTION-WORD epros under the "A" category.

(The encoded string is shown in Hexadecimal notation.)

-Remember, throw away the first letter (in this case an "A"), then find the value of the next letter in TABLE-7 and add 40H plus 80H to it so as to represent the left "[" and right "]" brackets.

APPENDIX-D

User Eprom Map (For use without EXCEPTION-WORD eprom)

NOTE: ENCAPSULATED SEQUENCES ARE USER-DEFINED, REFER TABLES 2,3, AND 4.

0 1 2 3 4 5 6 7 8 9 A B C D E F

X000	80	48	28	58	85	EO	35	E0	31	FF	FF	FF	FF	FF	FF	FF	← sample
X010	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	(see table 1).
X020	FF	FF	FF	1E	1F	20	21	28	29	24	25	22	23	2A	2B	26	←NEW PARAMETER INITIALIZATION
X030	27	2C	2D	2E	2F	32	33	34	35	36	EO	65	78	02	31	BE	ROUTINE.
X040	F1	43	C5	AA	XO	09	2D	FF	E2	1E	B8	AA	XO	23	D5	12	The MSnibble of the following locations
X050	DO	13	B9	9B	13	C3	AA	XO	09	2D	FF	E2	OB	B8	AA	XO	from the NEW PARAMETER INITIALIZATION
X060	23	D5	12	DO	13	B 9	9B	13	5D	16	E6	E9	C3	AA	XO	09	ROUTINE are user defined also:
X070	2D	FF	E2	14	A2	40	11	82	11	A2	15	11	C3	AA	XO	09	X044,X04C,X057,X05F,X06E,X07E,and X084;
X080	82	15	C3	AA	XO	09	82	14	98	29	03	98	2B	07	22	20	where X = 1,2,3,4,5,6,7,8,9,A,B,C,D,or E.
X090	9B	03	BE	F7	2B	9B	03	05	98	07	09	98	03	19	8C	MS	←(see note A on following page).

CTS256AL2 276-1786

APPENDIX-D (Cont'd)

X0A0 LS 8C F3 F4

t	User code may start at X0A4.	
out must cont	tain the MAIN-CONTROL-PROGE	RAM
omewhere w	vithin, refer to APPENDIX-F.	

NOTE A. Place the immediate address of the origin of the MAIN-CONTROL-PROGRAM (see APPENDIX-F) in these locations; so that program control will transfer to the user's code at the appropriate time.

APPENDIX-E

USER EPROM MAP (For use with EXCEPTION-WORD eprom)

NOTE 1. Contains no reserved locations, except for the MAIN-CONTROL-PROGRAM. (See APPENDIX-F).

NOTE 2. A user's code does not have to reside in a second eprom (USER eprom). It may reside in an unused portion of an EXCEPTION-WORD eprom which is for use where "USER eprom is present". Refer APPENDIX-B.

APPENDIX-F

USER'S MAIN CONTROL PROGRAM (For residency anywhere within USER eprom). NOTE: ENCAPSULATED AREAS ARE USER DEFINED UNLESS OTHERWISE NOTED.

F1AC = F3E7 = F1E2 = F1F0 = 000B = 0002 = 0003 = 0004 = 0005 = 0007 = 0009 = 00038 = 0038 = 0039 = 0032 = 0000 =	AUDIBLEEQU 0F1ACHGISPEECHEQU 0F3E7HSAVEEQU 0F1E2HESCAPEEQU 0F1F0HF2EQU R11F1HIEQU R2F1LOEQU R3R1HIEQU R4R1LOEQU R5F2LOEQU R7R2LOEQU R9WORDCNTHEQU R57BUFBVALUEQU R50IOCNTOEQU P0	;< ;< ;< ;< ;<	TORS WITHIN DEECH ALGORITHM.
9000 ORG > 9000 BEF1AC MES +	> 9000 ;This is ;Here it ;address ;with US ;this exe SAGE: CALL @AUDIBLE THIS ENCAPSULATED AREA I ines are placed here only if the up port.	the origin of the Main Control Program v is arbitrarily chosen to be 9000H. Remer s in the "MS", "LS" locations of the EXCI SER eprom"), see APPENDIX-B. (MS = N ample.) S NOT USER DEFINED user code wishes to gain	which is defined by the user. nber to place this immediate EPTION-WORD eprom ("for use ASB = 90 and the LS = LSB = 00 in + (The XXXX XXXX here does
XXXX XXXX	ANDP %>FE,IOCNT1	;DISABLE INTERRUPT-4 (SERIAL PORT).	as the X from the previous appendices and tables.)
XXXX XXXX	ANDP %FE,PORTB	;SET BUSY* LO.	
+ 9003 E00E	JMP ANYSTART	neros e decimiento a los decimientos e a los d	
9005 BC9046 CR	START: BR @USERCODI	E ;THE BRANCH ADDRESS BELOV ;AFTER INITIALIZATION OR AF ;SPEAKING WHAT HAS BEEN LU ;BUFFER CONTROL TRANSFER ;BRANCH INSTRUCTION.	V IS USER DEFINED. TER PROCESSING AND OADED INTO THE INPUT S TO THE USER CODE VIA THIS

CTS256AL2 276-1786

APPENDIX-F (Cont'd)

900B 76010B07	SPEAK:	BTJO %>01,F2,ANYST.	ART	
900C 73EF0B	CRWAIT	AND $\% > EF, F2$ BTIZ $\%$ 10 F2 CRWAIT		
9013 4D0305	ANYSTART:	CMP F1LO.R1LO		
9016 E607		JNE HOLEWORD		
9018 4D0204		CMP F1HI,R1HI		
901B E602		JNE HOLEWORD		
901D E0E6	WOL BUILDED	JMP CRSTART		
901F 7D0038	HOLEWORD:	CMP %>00, WORDCN'I	'H	
9022 E605		CMD % >00 WORDONT	ч	
9024 7 D0035		IEO HOLEWORD	CREENOW-MORESTON	
9029 770B0B09	BFULTEST:	BTIZ %>08.F2.PROCES	SS	
902D 7D0132	LOCKUP:	CMP %>01,BUFBVAL	J CHENCHARAMAN DU D	
9030 E211		JEQ ESC		
9032 760B0BFC	BFULHOLD:	BTJO %>08,F2,BFULH	OLD	
9036 BEF3D7	PROCESS:	CALL @GISPEECH		
9039 4D0709	MAINROUI:	LMP F2LU, K2LU		
903E A40100		DRP $\% > 01 10$ CNT0		
9041 E0D0		IMP ANYSTART		
9043 BCF1F0	ESC:	BR @ESCAPE		
9046 00	USERCODE: N	OP ;FROM TH	HIS POINT IT IS THE US	SER CODES RESPONSIBILITY
		;TU EXEC	UTE ITS OWN CODE OF	TO LOAD A CHARACIER
		SIKING I	THE INFUL BUFF	EL. ELOW DEMONSTRATE THE
		RECOM	IENDED SEQUENCE OF	F EVENTS FOR EACH MODE.
		:MODE 1	IS USED WHEN THE US	SER CODE HAS PREVIOUSLY
		;PREPAR	ED THE CHARACTER ST	FRING IT WISHES TO HAVE
		;SPOKEN	MODE 2 IS USED WHE	N THE USER CODE WISHES
		;TO EXEC	UTE ANYTHING ELSE.	
	MODE1	; LOADIN	INPUT BUFFER OF CO	DE-TO-SPEECH ALCORITHM
		;10/11/11		
		ACCUM	JLATOR AND STATUS	REGISTER ARE TO BE SAVED.
		;NO OTH	ER REGISTER IS TO BE	MODIFIED.
		;Loading a	character string is accor	nplished
		;by placin	g each character into the	Accumulator and
		;then usin	g CALL @SAVE to load 1	it into the input
		;Duller. Ke	Restore the Accumulato	a or phrase with a
		;uchinictor	. Restore the recumulate	T und the blatus registers. Can get Britters
		;and speal	the word(s) or phrase(s)	that were loaded.
		Bable = elep ; X C all		
NOTE: Once "S	SPEAK" is initia	ted, control does not ret	urn to the USERCODE ur	itil the last word or phrase that is in the input
buffer has been j	processed by the	code-to-speech algorith	m. NOTE: Because of ma	isked code-to-speech restrictions, the USER can
hold off addition	al serial commu	al port while speech pro	cessing is in progress. Du	ulated lines shown above
noid on addition		:	sinshed by the two encaps	
		THE FOR	LOWING EXAMPLE WI	ILL LOAD THE LETTER "A" AND
		;SPEAK I	T:	
9047 OE	PUSH ST	;SAVE CO	ONTENTS OF STATUS R	EGISTER.
9048 B8	PUSH A	;SAVE CO	ONTENTS OF ACCUMU	LATOR.
9049 2241 004P 9FF1F2	MUV %>	AVE IOADT	IH (which is ASCII "A")	INTO THE ACCUMULATOR.
904D 0EF1E2	MOV %	AVE ,LOAD II	DH (which is a carriage r	LINFUI DUFFER.
9050 BEF1E2	CALL @S	AVE LOAD T	HE DELIMETER INTO T	HE INPUT BUFFER
9053 B9	POP A	RECOVE	R CONTENTS OF ACCU	JMULATOR.
9054 08	POP ST	RECOVE	R CONTENTS OF STAT	US REGISTER.
9055 8C900B	BR @SPE	AK ;TRANSF	ER CONTROL TO THE	MAIN-CONTROL-PROGRAM WHICH
	La secondaria			
		;WILL AC	CCESS THE CODE-TO-SP	PEECH ALGORITHM; AFTER WHICH
		;THE CO	NTROL WILL RETURN	TO THE "BR @USERCODE" INSTRUCTION
		LOCATIC	JN.	

CTS256AL2 276-1786

APPENDIX-F (Cont'd)	
9058 00 MODE2: NOP	; ;The following is the recommended ;sequence of events necessary for the user's code ;to do anything else (except for loading the input ;buffer as described under MODE 1.)
	SAVE STATUS REGISTER SAVE STATUS REGISTER SAVE REGISTER 0 THRU 39H (EXTERNAL-RAM MODE), along with 3AH thru current Stack Pointer. OR, SAVE REGISTER 0 THRU 7FH (INTERNAL-RAM MODE). (DO NOT USE PUSH INSTRUCTIONS TO SAVE THE REGISTERS BECAUSE THE STACK IS NOT LARGE ENOUGH, INSTEAD BLOCK MOVE THE RESPECTIVE REGISTER CONTENTS INTO EXTERNAL-USER-RAM.
	; ;USER DEFINED CODE GOES HERE NEXT.
	; ;(TO READ THE SERIAL PORT, SEE THE EXAMPLE SEQUENCE BELOW).
	; ;THEN RECOVER RESPECTIVE REGISTERS.
	;RECOVER STATUS REGISTER. ;BRANCH TO MODE 1, OR BRANCH TO OTHER USER CODE such as the ;example shown below for reading the serial part.
	;The following is the recommended sequence of events necessary ;for the user's code to obtain input from the serial port:
LOOP: DRP %>01,IOCNT1 DRP %>01,PORTB	, ENABLE INTERRUPT-4 (SERIAL PORT) BECAUSE WANT TO RECEIVE SERIAL ; INPUT. ;SET BUSY\$ HI.
IDLE ANDP %>FE,IOCNT1	;WAIT HERE FOR SERIAL INTERRUPT TO OCCUR AND TO BE SERVICED. ;DISABLE INTERRUPT-4 (SERIAL PORT).
NOP	; ; THE CHARACTER RECEIVED BY SERIAL PORT IS IN THE ACCUMULATOR, ; SO THE USER MAY EVALUATE IT HERE.
MOV %>08,A CALL @SAVE	, LOAD A "BACKSPACE" INTO ACCUMULATOR IN ORDER TO TELL ;THE CODE-TO-SPEECH INPUT BUFFER TO IGNORE THE CHARACTER ;WHICH ARRIVED VIA THE SERIAL PORT. ;
NOP	;IF USER WANTS ADDITIONAL CHARACTERS FROM THE SERIAL PORT TO
	;EVALUATE: ;JUMP TO LOOP TO WAIT FOR NEXT SERIAL PORT INTERRUPT (JMP LOOP).
	;OTHERWISE: ENABLE INTERRUPT-4 (DRP %>01,IOCNT1), SET BUSY\$ LO ;(ANDP %>FE,PORTB), ;THEN FALL THRU TO REST OF USER CODE.
NOTE: To successfully incorporate a concepts described in this appl	USER program with the code-to-speech algorithm requires a thorough understanding of the ication note, and an in-depth working knowledge of PIC7001 assembly language.
	The all

SP0256 276-1784

SPEECH PROCESSOR

GENERAL DESCRIPTION

The SPO256 (Speech Processor) is a single chip N-Channel MOS LSI device that is able, using its stored program to synthesize speech or complex sounds.

The achievable output is equivalent to a flat frequency response ranging from 0 to 5KHz, a dynamic range of 42dB, and a signal to noise ratio of approximately 35 dB.

- The SPO256 incorporates four basic functions:
- A. A software programable digital filter that can be made to model a VOCAL TRACT.
- B. A 16K ROM which stores both data and instructions (THE PROGRAM).
- C. A MICROCONTROLLER which controls the data flow from the ROM to the digital filter, the assembly of the "word settings" necessary for linking speech elements together, and the amplitude and pitch information to excite the digital filter.
- D. A PULSE WIDTH MODULATOR that creates a digital output which is converted to an analog signal when filtered by an external low pass filter.

FEATURES

- Natural Speech
- Wide Operating Voltage
- Simple Interface to Most Microcomputers or Microprocessors
 Supports L.P.C. Synthesis: Formant Synthesis: Allophone
- Synthesis

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{DD})
(V _{D1})
All Pins With Respect to V_{SS})
Supply Current (I_{DD}) $(V_{D1}, V_{DD} = 7V)$
(Reset and SBY Reset High) 90 mA
Supply Current (I_{D1} (V_{D1} , V_{DD} =7V)
(Reset and SBY Reset High) 21 mA
Storage Temperature Range25°C To 125°C
Operating Temperature Range 0°C To 70°C

STANDARD CONDITIONS

Clock-Crystal Frequency 3.120 MHz

PIN CONNECTION

SP0256 276-1784

ALLOPHONE USAGE WITH A MICROPROCESSOR

The SPO256 requires the use of a processor to concatenate the speech sounds to form words.

The SPO256 is controlled using the address pins (A1-A8), ALD (Address Load), and SE (Strobe Enable). The object for controlling the chip is to load an address into it which contains the desired allophone. The speech data for the allophone set is contained within the internal 16 K ROM of the SPO256.

This particular application (Allophone Set) requires only six address pins (A1-A6) to address all the 59 allophones plus five pauses, a total of 64 locations. For simplicity, since only six address pins are needed to address the 64 locations, pins A7 and A8 can be tied low (to ground) and now any further references to the address bus will include A1-A6 and A7=A8=0.

There are two modes available for loading an address into the chip. SE (Strobe Enable) controls the mode that will be used.

Mode 0. (SE=0) will latch in an address when any one or more of the address pins makes a low to high transition. For example, to load the address one (1), A2 to A6=0 and A1 is pulsed high. To load the address twelve (12 octal), A1=A3=A5=A6=0, A2 and A4 are pulsed high simultaneously. (Note that an address of zero cannot be loaded using this mode).

Mode 1 (SE=1) will latch in an address using the ALD pin. First, setup the desired address on the address bus (A1=A6) and then pulse ALD low. Any address can be loaded using this mode, but certain setup and hold times are required.

Two microprocessor interface pins are available for quick loading of addresses. They are LRQ and SBY. LRQ (Load Request) tells the processor when the input buffer is full. SBY (Stand By) tells the processor that the chip has stopped talking and no new address has been loaded. Either interface pin can be used when concatenating allophones. LRQ is an active low signal, when LRQ goes low it is time to load a new address to the chip. If LRQ is high, then simply wait for it to go low before loading the address. SBY will stay high until an address is loaded, then it will go low and stay low until all the internal instructions (Speech Code) from that one address. Since speech does not require very fast address loading, it would be acceptable to use SBY to interface to the processor.

To end a word using allophones it is necessary to load a pause to complete the word. For example, the word "TWO" can be implemented using the following allophones, TT2-VW2-PA1. PA1 is actually not an allophone but a pause which is needed to end the word.

BLOCK DIAGRAM

SP0256 276-1784

ALLOPHONE BASED SPEECH PROCESSOR—SP0256-AL2

PIN FUNCTIONS

PIN NUMBER	NAME	FUNCTION
1	V _{SS}	Ground
2	RESET	A logic 0 resets that portion of the SP powered by $V_{\text{DD}}.$ Must be returned to a logic 1 for normal operation.
3	ROM DISABLE	For use with an external serial speech ROM, a logic 1 disables the external ROM.
4, 5, 6	C1, C2, C3	Output control lines for use with an external serial speech ROM.
7	V _{DD}	Power supply for all portions of the SP except the microprocessor interface logic.
8	SBY	STANDBY. A logic 1 output indicates that the SP is inactive and V_{DD} can be powered down externally to conserve power. When the SP is reactivated by an address being loaded, SBY will go to a logic 0.
9	LRQ	$\overline{\text{LOAD REQUEST. LRQ}}$ is a logic 1 output whenever the input buffer is full. When $\overline{\text{LRQ}}$ goes to a logic 0, the input port may be loaded by placing the 8 address bits on A1-A8 and pulsing the $\overline{\text{ALD}}$ output.
10, 11, 13, 14, 15, 16, 17, 18,	A8, A7, A6, A5, A4, A3, A2, A1	8 bit address which defines any one of 256 speech entry points.
12	SER OUT	SERIAL ADDRESS OUT. This output transfers a 16-bit address serially to an exter- nal speech ROM.
19	SE	STROBE ENABLE. Normally held in a logic 1 state. When tied to ground, $\overline{\text{ALD}}$ is disabled and the SP will automatically latch in the address on the input bus approximately 1μ s after detecting a logic 1 on any address line.
20	ALD	ADDRESS LOAD. A negative pulse on this input loads the 8 address bits into the input port. The negative edge of this pulse causes LRQ to go high.
21	SER IN	SERIAL IN. This is an 8-bit serial data input from an external speech ROM.
22	TEST	This pin should be grounded for normal operation.
23	VD1	Power supply for the microprocessor interface logic and controller.
24	DIGITAL OUT	Pulse width modulated digital speech output which, when filtered by a 5KHz low pass filter and amplified, will drive a loudspeaker.
25	SBY RESET	STANDBY RESET. A logic 0 resets the microprocessor interface logic and the address latches. Must be returned to a logic 1 for normal operation.
26	ROM CLOCK	This is a 1.56MHz clock output used to drive an external serial speech ROM.
27	OSC1	XTAL IN. Input connection for a 3.12MHz crystal.
28	OSC2	XTAL OUT. Output connection for a 3.12MHz crystal

ALLOPHONE SPEECH SYNTHESIS

INTRODUCTION

The allophone speech synthesis technique provides the user with the ability to synthesize an unlimited vocabulary at a very low bit rate. Fifty-nine discrete speech sounds (called allophones) and five pauses are stored at different addresses in the SPO256 internal ROM. Each speech sound was excised from a word and analyzed using linear predictive coding (LPC). Any English word or phrase can be created by addressing the appropriate combination of allophones and pauses. Since there is a total of 64 address locations each requires a 6 bit address. Assuming that speech contains 10 to 12 sounds per second, allophone synthesis requires addressing less than 100 bits per second.

LINGUISTICS

A few basic linguistic concepts will help you start your own library of "allophone words". (See Table 1 for Allophone Dictionary). First, there is no oneto-one correspondence between written letters and speech sounds; secondly, speech sounds are acoustically different depending upon their position within

SP0256 276-1784

LINGUISTICS (Continued)

a word; and lastly, the human ear may perceive the same acoustic signal differently in the context of different sounds.

The first point compares to the problem that a child encounters when learning to read. Each sound in a language may be represented by more than one letter and, conversely each letter may represent more than one sound. (See the examples in Table 2.) Because of these spelling irregularities, it is necessary to think in terms of sounds, not letters, when using allophones.

The second, and equally important, point to understand, is that the acoustic signal of a speech sound may differ depending upon its position within a word. For example, the initial K sound in *coop* will be acoustically different from the K's in keep and speak. The K's in *coop* and keep differ due to the influence of the vowels which follow them, and the final K in speak is usually not as loud as initial K's.

Finally, a listener may identify the same acoustic signal differently depending on the context in which it is perceived. Don't be surprised, therefore, if an allophone word sounds slightly different when used in various phrases.

PHONEMES OF ENGLISH

The sounds of a language are called phonemes, and each language has a set which is slightly different from that of other languages. Table 3 contains a chart of all the consonant phonemes of English, table 4 all the vowel phonemes.

Consonants are produced by creating an occlusion or constriction in the vocal tract which produces an aperiodic sound source. If the vocal cords are vibrating at the same time, as in the case of the voiced fricatives VV, DH, ZZ, and ZH, (See Table 5) there are two sound sources: one which is aperiodic and one which is periodic.

Vowels are usually produced with a relatively open vocal tract and a periodic sound source provided by the vibrating vocal cords. They are classified according to whether the front or back of the tongue is high or low (See Table 4) whether they are long or short, and whether the lips are rounded or unrounded. In English all rounded vowels are produced in or near the back of the mouth (UW, UH, OW, AO, OR, AW).

Speech sounds which have features in common behave in similar ways. For example, the voiceless stop consonants PP, TT and KK (See Table 3) should be preceded by 50-80 msec of silence, and the voiced stop consonants BB, DD, and GG by 10-30 msec of silence.

ALLOPHONES

Phoneme is the name given to a group of similar sounds in a language. Recall that a phoneme is acoustically different depending upon its position within a word. Each of these positional variants is an allophone of the same phoneme. An allophone, therefore, is the manifestation of a phoneme in the speech signal. It is for this reason that our inventory of English speech sounds is called an allophone set.

HOW TO USE THE ALLOPHONE SET

(See Table 1 for instructions on how to create all the sample words mentioned in this section.) The allophone set (Refer to Table 5) contains two or three versions of some phonemes. It may be necessary to use one allophone of a particular phoneme for word-or-syllable-final position. A detailed set of guidelines for using the allophones is given in Table 5. Note that these are suggestions, not rules.

For example, DD2 sounds good in initial position and DD1 sounds good in final position, as a "daughter" and "collide." One of the differences between the initial and final versions of a consonant is that an initial version may be longer than the final version. Therefore, to create an initial SS, you can use two SSs instead of the usual single SS at the end of a word or syllable, as in "sister." Note that this can be done with TH and FF, and the inherently short vowels (to be discussed below), but with no other consonants. You will want to experiment with some consonant clusters (strings of consonant such as str, cl) to discover which version works best in the cluster. For example, KK1 sounds good before LL as in "clown," and KK2 sounds good before WW as in "square." One allophone of a particular phoneme may sound better before or

SP0256 276-1784

HOW TO USE THE ALLOPHONE SET (Continued)

after back vowels and another before or after front vowels. KK3 sounds good before UH and KK1 sounds good before IY, as in "cookie." Some sounds (PP, BB, TT, DD, KK, GG, CH, and JH) require a brief duration of silence before them. For most of these, the silence has already been added but you may decide you want to add more. Therefore, there are several pauses included in the allophone set varying from 10–200 msec. To create the final sounds in the words "letter" and "little" use the allophone ER and EL.

Remember that you must always think about how a word sounds, not how it is spelled. For example, the NG sound is represented by the letter N in "uncle". And remember that some sounds may not even be represented in words by any letters, as the YY in "computer".

As mentioned earlier there are some vowels which can be doubled to make longer versions for stressed syllables. These are the inherently short vowels IH, EH, EA, EX, AA, and UH. For example, in the word "extent" use one EH in the first syllable, which is unstressed and two EHs in the second syllable which is stressed. Of the inherently long vowels there is one, UW, which has a long and short version. The short one, UW1, sounds good after YY in computer. The long version, UW2, sounds good in monosyllabic words like "two." Included in the vowel set is a group called R-colored vowels. These are vowel + R combinations. For example, the AR in "alarm" and the OR in "score." Of the R-colored vowels there is one, ER, which has a long and short version. The short version is good for polysyllabic words with final ER sounds like "letter," and the long version is good for monosyllabic words like "fir." One final suggestion is that you may want to add a pause of 30–50 msec. between words, when creating sentences, and a pause of 100–200 msec. between clauses.

Note: Every utterance must be followed by a pause in order to make the chip stop speaking the last allophone.

TABLE 1: THE ALLOPHONE DICTIONARY

7.7. YR OW

NUMBERS

zero one, won two, to, too three four, for, fore five six seven eight, ate nine ten eleven twelve thirteen fourteen fifteen sixteen seventeen

eighteen

nineteen

twenty

thirty

forty

fifty

sixty

seventy

eighty

ninety

hundred

WW SX ZX NN1 TT2 UW2 TH RR1 IY FF FF OR FF FF AY VV SS SS IH IH PA3 KK2 SS SS SS EH EH VV IH NN1 EY PA3 TT2 NN1 AA AY NN1 TT2 EH EH NN1 IH LL EH EH VV IH NN1 TT2 WH EH EH LL VV TH ER1 PA2 PA3 TT2 IY NN1 FF OR PA2 PA3 TT2 IY NN1 FF IH FF PA2 PA3 TT2 IY NN1 SS SS IH PA3 KK2 SS PA2 PA3 TT2 IY NN1 SS SS EH VV TH NN1 PA2 PA3 TT2 IY NN1 EY PA2 PA3 TT2 IY NN1 NN1 AY NN1 PA2 PA3 TT2 IY NN1 TT2 WH EH EH NN1 PA2 PA3 TT2 IY TH ER2 PA2 PA3 TT2 IY FF OR PA3 TT2 IY FF FF IH FF FF PA2 PA3 TT2 IY SS SS IH PA3 KK2 SS PA2 PA3 TT2 IY SS SS EH VV IH NN1 PA2 PA3 TT2 IY EY PA3 TT2 IY NN1 AY NN1 PA3 TT2 IY HH2 AX AX NN1 PA2 DD2 RR2 IH IH PA1 DD1

TH AA AW ZZ TH PA1 PA1 NN1 thousand DD1 MM IH IH LL YY1 AX NN1 million **DAY OF THE WEEK:** Sunday SS SS AX AX NN1 PA2 DD2 EY Monday MM AX AX NN1 PA2 DD2 EY Tuesday TT2 UW2 ZZ PA2 DD2 EY Wednesday WW EH EH NN1 ZZ PA2 DD2 EY Thursday TH ER2 ZZ PA2 DD2 EY FF RR2 AY PA2 DD2 EY Friday Saturday SS SS AE PA3 TT2 PA2 DD2 EY

MONTHS:

January February March April May June July August September

ooptombo

October

November

December

JH AE AE NN1 YY2 XR IY FF EH EH PA2 BR RR2 UW2 XR IY MM AR PA3 CH EY PA3 PP RR2 IH IH LL MM EY JH UW2 NN1 JH UW1 LL AY AO AO PA2 GG2 AX SS PA3 TT1 SS SS EH PA3 PP PA3 TT2 EH EH PA1 BB2 ER1 AA PA2 KK2 PA3 TT2 OW PA1 BB2 ER1 NN2 OW VV EH EH MM PA1 BB2 ER1

DD2 IY SS SS EH EH MM PA1 BB2 ER1

SP0256 276-1784

ALLOPHONE DICTIONARY (Continued)

LETTERS:

A

B

C

D

E

F

G

H

K

L

Μ

N O

P

Q

R

S

Т

U

V

W

X

Y

Z

	EY
	BB2 IY
	SS SS IY
	DD2 IY
	IY
	EH EH FF FF
	IHIY
	EY PA2 PA3 CH
	AAAY
1110 014 11	IH EH EY
	KK1 EH EY
	EH EH EL
	EHEHEM
	EH EH NN1
	OW
	PPIV
	KK1 VV1 UW2
	AR
	FH FH SS SS
	TTO IV
	VVII
	DD2 AX PA2 BB2 I I I UW.
	EH EH PA3 KK2 55 55
	WW AY
	ZZIY

DICTIONARY

alarm bathe bather bathing beer bread by calendar clock clown check

checked checker checkers checking checks cognitive

collide computer cookie coop correct corrected

correcting

corrects

crown date daughter day divided AX LL AR MM BB2 EH DH2 BB2 EY DH2 ER1 BB2 EY DH2 IH NG BB2 YR BB1 RR2 EH EH PA1 DD1 BB2 AA AY KK1 AE AE LL EH NN1 PA2 DD2 ER1 KK1 LL AA AA PA3 KK2 KK1 LL AW NN1 CH EH EH PA3 KK2 CH EH EH PA3 KK2 PA2 TT2 CH EH EH PA3 KK1 ER1 CH EH EH PA3 KK1 ER1 ZZ CH EH EH PA3 KK1 IH NG CH EH EH PA3 KK1 SS KK3 AA AA GG3 NN1 IH PA3 TT2 IH VV KK3 AX LL AY DD1 KK1 AX MM PP1 YY1 UW1 TT2 ER KK3 UH KK1 IY KK3 UW2 PA3 PP KK1 ER2 EH EH PA2 KK2 PA2 TT1 KK1 ER2 EH EH PA2 KK2 PA2 TT2 IH PA2 DD1 KK1 ER2 EH EH PA2 KK2 PA2 TT2 IH NG KK1 ER2 EH EH PA2 KK2 PA2 TT1 SS KK1 RR2 AW NN1 DD2 EY PA3 TT2 DD2 AO TT2 ER1 DD2 EH EY DD2 IH VV AY PA2 DD2 IH PA2 DD1

emotional engage engagement engages engaging enrage enraged enrages enraging escape escaped escapes escaping equal equals error extent fir freeze freezer freezers freezing frozen gauge gauged gauges gauging hello hour infinitive intrigue intrigued intrigues intriguing investigate investigated investigater investigaters investigates investigating key legislate legislated legislates

IY MM OW SH AX NN1 AX EL EH EH PA1 NN1 GG1 EY PA2 JH EH EH PA1 NN1 GG1 EY PA2 IH MM EH EH NN1 PA2 PA3 TT2 EH EH PA1 NN1 GG1 EY PA2 JH IH 7.7 EH EH PA1 NN1 GG1 EY PA2 JH IH NG EH NN1 RR1 EY PA2 JH EH NN1 RR1 EY PA2 JH PA2 DD1 EH NN1 RR1 EY PA2 JH IH ZZ EH NN1 RR1 EY PA2 JH IH NG EH SS SS PA3 KK1 PA2 PA3 PP EH SS SS PA3 KK1 PA2 PA3 PP PA2 TT2 EH SS SS PA3 KK1 PA2 PA3 PP SS EH SS SS PA3 KK1 PA2 PA3 PP IH NG IY PA2 PA3 KK3 WH AX EL IH PA2 PA3 KK3 WH AX EL ZZ EH XR OR EH KK1 SS TT2 EH EH NN1 TT2 FF ER2 FF FF RR1 IY ZZ FF FF RR1 IY ZZ ER1 FF FF RR1 IY ZZ ER1 ZZ FF FF RR1 IY ZZ IH NG FF FF RR1 OW ZZ EH NN1 GG1 EY PA2 JH GG1 EY PA2 JH PA2 DD1 GG1 EY PA2 IH IH ZZ GG1 EY PA2 JH IH NG HH EH LL AX OW AW ER1 IH NN1 FF FF IH IH NN1 IH PA2 PA3 TT2 IH VV IH NN1 PA3 TT2 RR2 IY PA1 GG3 IH NN1 PA3 TT2 RR2 IY PA1 GG3 PA2 DD1 IH NN1 PA3 TT2 RR2 IY PA1 GG3 ZZ IH NN1 PA3 TT2 RR2 IY PA1 GG3 IH NG IH IH NN1 VV EH EH SS PA2 PA3 TT2 IH PA1 GG1 EY PA2 TT2 IH IH NN1 VV EH EH SS PA2 PA3 TT2 IH PA1 GG1 EY PA2 TT2 IH PA2 DD1 IH IH NN1 VV EH EH SS PA2 PA3 TT2 IH PA1 GG1 EY PA2 TT2 ER1 IH IH NN1 VV EH EH SS PA2 PA3 TT2 IH PA1 GG1 EY PA2 TT2 ER1 ZZ IH IH NN1 VV EH EH SS PA2 PA3 TT2 IH PA1 GG1 EY PA2 TT1 SS EH EH NN1 VV EH EH SS PA2 PA3 TT2 IH PA1 GG1 EY PA2 TT2 IH NG KK1 IY LL EH EH PA2 JH JH SS SS LL EY PA2 PA3 TT2 LL EH EH PA2 JH JH SS SS LL EY PA2 PA3 TT2 IH DD1 LL EH EH PA2 JH JH SS SS LL EY PA2 PA3 TT1 SS

SP0256 276-1784

ALLOPHONE DICTIONARY DICTIONARY (Continued)

legislating

legislature

letter litter little memory memories minute month nip nipped nipping nips no physical pin pinned pinning pins pledge pledged pledges pledging plus rav rays ready red robot robots score second sensitive sensitivity sincere sincerely sincerity sister speak spell spelled speller spellers spelling

spelling spells start started starter starting starts

stop stopped

stopper stopping

stops subject (noun)

subject (verb)

PA3 KK2 PA3 TT2

LL EH EH PA2 JH JH SS SS LL EY PA2 PA3 TT 2 IH NG LL EH EH PA2 IH IH SS SS LL EY PA2 PA3 CH ER1 LL EH EH PA3 TT2 ER1 LL IH IH PA3 TT2 ER1 LL IH IH PA3 TT2 EL MM EH EH MM ER2 IY MM EH EH MM ER2 IY ZZ MM 1H NN1 IH PA3 TT2 MM AX NN1 TH NN1 IH IH PA2 PA3 PP NN2 IH IH PA2 PA3 PP PA3 TT2 NN1 IH IH PA2 PA3 PP IH NG NN1 IH IH PA2 PA3 PP SS NN2 AX OW FF FF IH ZZ IH PA3 KK1 AX EL PP IH IH NN1 PP IH IH NN1 PA2 DD1 PP IH IH NN1 IH NG1 PP IH IH NN1 ZZ PP LL EH FH PA3 IH PP LL EH EH PA3 JH PA2 DD1 PP LL EH EH PA3 IH IH ZZ PP LL EH EH PA3 JH IH NG PP LL AX AX SS SS RR1 EH EY **RR1 EH EY ZZ** RR1 EH EH PA1 DD2 IY RR1 EH FH PA1 DD1 RR1 OW PA2 BB2 AA PA3 TT2 RR1 OW PA2 BB2 AA PA3 TT1 SS SS SS PA3 KK3 OR SS SS EH PA3 KK1 IH NN1 PA2 DD1 SS SS EH EH NN1 SS SS IH PA2 PA3 TT2 IH VV SS SS EH EH NN1 SS SS IH PA2 PA3 TT2 IH VV IH PA2 PA3 TT2 IY SS SS IH IH NN1 SS SS YR SS SS IH IH NN1 SS SS YR LL IY SS SS IH IH NN1 SS SS EH EH RR1 IH PA2 PA3 TT2 IY SS SS IH IH SS PA3 TT2 ER1 SS SS PA3 IY PA3 KK2 SS SS PA3 PP EH EH EL SS SS PA3 PP EH EH EL PA3 DD1 SS SS PA3 PP EH EH EL ER2 SS SS PA3 PP EH EH EL ER2 ZZ SS SS PA3 PP EH EH EL IH NG SS SS PA3 PP EH EH EL ZZ SS SS PA3 TT2 AR PA3 TT2 SS SS PA3 TT2 AR PA3 TT2 IH PA1 DD2 SS SS PA3 TT2 AR PA3 TT2 ER1 SS SS PP3 TT2 AR PA3 TT2 IH NG SS SS PP3 TT2 AR PA3 TT1 SS SS SS PA3 TT1 AA AA PA3 PP SS SS PA3 TT1 AA AA PA3 PP PA3 TT2 SS SS PA3 TT1 AA AA PA3 PP ER1 SS SS PA3 TT1 AA AA PA3 PP IH NG SS SS PA3 TT1 AA AA PA3 PP SS SS SS AX AX PA2 BB1 PA2 JH EH PA3 KK2 PA3 TT2 SS SS AX PA2 BB1 PA2 JH EH EH

sweat sweated sweater sweaters sweating sweats switch switched switches switching system systems talk talked talker talkers talking talks thread threaded threader threaders threading threads then time times uncle whale whaler whalers whales whaling vear yes

SS SS WW EH EH PA3 TT2 SS SS WW EH EH PA3 TT2 IH PA3 DD1 SS SS WW EH EH PA3 TT2 ER1 SS SS WW EH EH PA3 TT2 ER1 ZZ SS SS WW EH EH PA3 TT2 IH NG SS SS WW EH EH PA3 TT2 SS SS SS WH IH IH PA3 CH SS SS WH IH IH PA3 CH PA3 TT2 SS SS WH IH IH PA3 CH IH ZZ2 SS SS WH IH IH PA3 CH IH NG2 SS SS IH IH SS SS PA3 TT2 EH MM SS SS IH IH SS SS PA3 TT2 EH MM 7.7. TT2 AO AO PA2 KK2 TT2 AO AO PA3 KK2 PA3 TT2 TT2 AO AO PA3 KK1 ER1 TT2 AO AO PA3 KK1 ER1 ZZ TT2 AO AO PA3 KK1 IH NG TT2 AO AO PA2 KK2 SS TH RR1 EH EH PA2 DD1 TH RR1 EH EH PA2 DD2 IH PA2 DD1 TH RR1 EH EH PA2 DD2 ER1 TH RR1 EH EH PA2 DD2 ER1 ZZ TH RR1 EH EH PA2 DD2 IH NG TH RR1 EH EH PA2 DD2 ZZ DH1 EH EH NN1 TT2 AA AY MM TT2 AA AY MM ZZ AX NG PA3 KK3 EL WW EY EL WW EY LL ER1 WW EY LL ER1 ZZ WW EY EL ZZ WW EY LL TH NG YY2 YR YYS EH EH SS SS

SP0256 276-1784

Same sound **Different sounds** represented by represented by the different letters same letters mEAt vEIn Vowels fEEt forElgn dEIsm pEte pEOple dElcer pennY gEIsha althouGH SHip Consonants tenSIon GHastly preClous couGH naTIon hiccouGH

TABLE 2—EXAMPLES OF SPELLING IRREGULARITIES

TABLE 3—CONSONANT PHONEMES OF ENGLISH

	有用 影响	LABIAL	LABIO- DENTAL	INTER- DENTAL	ALVEO- LAR	PALATAL	VELAR	GLOTTAL
Stops:	Voiceless Voiced	PP BB			TT DD	and the second s	KK GG	
Fricatives:	Voiceless Voiced	WH	FF VV	TH DH	SS ZZ	SH ZH*		HH
Affricates:	Voiceless Voiced	offwag faar				СН ЈН	agio mangale. Silo di Mangale.	
Nasals	Voiced	MM			NN	altres a little	NG*	
Resonants	Voiced	ww	a second a second		RR,LL	YY	is for	and transfe

These do not occur in word-initial position in English.

Labial:Upper and Lower Lips Touch or ApproximateLabio-Dental:Upper Teeth and Lower Lip/TouchInter-Dental:Tongue Between TeethAlveolar:Tip of Tongue Touches or Approximates Alveolar Ridge (just
behind upper teeth)Palatal:Body of Tongue Approximates Palate (roof of mouth)Velar:Body of Tongue Touches Velum (posterior portion of roof of
mouth)

Glottal: Glottis (opening between vocal cords)

TABLE 4—VOWEL PHONEMES OF ENGLISH

	FRONT	CENTRAL	BACK
High	YR IY IH*		UW# UH*#
Mid	EY EH* XR	ER AX*	OW# OY#
Low	AE*	AW# AY AR AA*	AO*# OR#

*SHORT VOWELS #ROUNDED VOWELS

SP0256 276-1784

TABLE 5—GUIDELINES FOR USING THE ALLOPHONES

Silene	ce			Voiced St	tops				
PA1 PA2	(10 ms) (30 ms)	-before BB, DD, GG and JH -before BB, DD, GG, and JH before BB, TT, KK, and CH, and CH	nd ha	/BB1/		—final fibber;	position: ri <u>b;</u>	between	vowels:
PA3	(50 ms)	tween words	1d De-	/BB2/		-in clus	position before a	vn a vowel: <u>b</u>	east
PA4 PA5	(100 ms) (200 ms)	-between clauses and sentences		/DD1/ /DD2/		—initial	position: down;	clusters: c	lrain
Short	Vowels			/GG1/		-Defore EY. EH.	XR	weis: i K,	II, IH,
*/IH/ */EH/ */AE/		-sitting, stranded -extent, gentlemen		/GG2/		-before OY, AX;	high back vowe and	els: UW, U	JH, OW,
*/UH/ */AO/ */AX/		-cookie, full -talking, song -lapel, instruct		/GG3/		—before AA, AO —media	low vowels: A , OR, ER; and l clusters: ange	E, AW, . r; and fii	AY, AR, nal posi-
*/AA/		—pottery, cotton				tion: peg	2		
Long	Vowels			Voiceles	Stons				
/IV/	1011010	treat neonle penny		/pp/	*	nleasu	ire ample trip		
/EY/		-great, statment, tray		/TT1/		-final c	lusters before SS	S: tests, its	
/AY/		-Kite, sky, mighty		/TT2/		-all oth	er positions: test	, street	
/OY/		-noise, toy, voice		/KK1/		-before	e front vowels: Y	R, IY, IH,	EY, EH,
/UW1/		-after clusters with YY; computer				XR, AY,	, AE, ER, AX;		
10 W 21		-In monosyllabic words: two, 100d		/KK2/		-final n	osition: speak: fi	inal cluste	rs: task
/AW/		-sound, mouse, down		/KK3/		-before	back vowels: L	JW, UH, (OW, OY,
/EL/		—little, angle, gentlemen				OR, AR,	, AQ;		all
R-Col	larad Var	vole				—initial	l clusters: <u>cr</u> ar	ne, <u>qu</u> ick	, <u>cl</u> own,
R-CU	loreu vov	vers		Affricato		scream			
/ER1/		-letter, furniture, interrupt		Annual	50		L Contract		
/OR/		-fortune, adorn, store		/UH/		-cnurc	n, leature		
/AR/		—farm, alarm, garment		Nasal		Judgo,	, mjure		
/YR/		-hear, earring, irresponsible		/MM/		-milk.	alarm, ample		
/XR/		—hair, declare, stare		/NN/		-before	e front and cent	ral vowels	: YR, IY,
Reson	ants					IH, EY,	, EH, XR, AE,	ER, AX, A	AW, AY,
/ww/		—we, warrant, linguist		/NINI2/		UW; fin	al clusters: earn	UH OW	OV CP
/RR1/		—initial position: read, write, x-ray		/111144/		AR. AA	C DACK VOWEIS, I	011, 010,	OI, CR,
/RR2/		-initial clusters: brown, crane, grea	se	/NG/		-string	, anger		
/YY1/		-clusters: cute, beauty, varn, vo-vo		*These al	lophones	can be d	oubled.		
/YY2/		—initial position: yes, yarn, yo-yo							
Voice	d Fricative	88							
/VV/		—vest, prove, even							
/DH1/		-word-initial position: this, then, th	ey						
/DH2/		-word-final and between vowels:	bathe,						
17.7.1		Datning — 700 phase							
/ZH/		-beige, pleasure							
Voice	less Fricat	ives							
*/FF/		—) These may be doubled for initia	al posi-						
*/TH/		-)	1						
*/SS/		_)							
/SH/		—shirt, leash, nation							
/HH1/		-before front vowels, RY, IY, IH E	Y, EH,						
/HH2/		—before back vowels: UW, UH, OV AO, OR, AR	W, OY,						
/WH/		-white, whim, twenty							

SP0256 276-1784

TABLE 6—ALLOPHONE ADDRESS TABLE

OCTAL ADDRESS	DECIMAL ADDRESS	ALLOPHONE	SAMPLE WORD	DURATION
000	000000 000	PA1 '	PAUSE	10MS
001	001 -00001	PA2	PAUSE	30MS
002	002 , 20210	PA3	PAUSE	50MS
003	003 00011	PA4	PAUSE	100MS
004	004 00100	PA5	PAUSE	200MS
005	005 06101	/OY/	Boy	420MS
006	0060	/AY/	Sky	260MS
007	007 00111	/EH/	End	70Ms
010	008000	/KK3/	Comb	120MS
011	009 01001	/PP/	Pow	210MS
012	010	/IH/	Dodge	140MS
013	011	/NN1/	Thin	140MS
014	012 .00	/IH/	Sit	70MS
015	013	/TT2/	to	140MS
016	014	/RR1/	Rural	170MS
017	015	/AX/	Succeed	70MS
020	016 ,0000	/MM/	Milk	180MS
021	017 ,0001	/TT1/	Part	100MS
022	018 ,0010	/DH1/	They	290MS
023	019 10011	/IY/	See	250MS
024	020 10100	/EY/	Beige	280MS
025	021 0107	/DD1/	Could	70MS
026	022	/UW1/	То	100MS
027	023	/AO/	Aught	100MS
030	024	IAA/	Hot	100MS
031	025	/YY2/	Yes	180MS
032	026	/AE/	Hat	120MS
033	027	/HH1/	He	130MS
034	028 1100	/BB1	Business	80MS
035	029	/TH/	Thin	180MS
036	030	/UH/ ·	Book	100MS
037	031	/UW2/	Food	260MS
040	032 .00000	/AW/	Out	370MS
041	033 100001	/DD2/	Do	160MS
042	034 10 0010	/GG3/	Wig	140MS
043	035 100011	/VV/	Vest	190MS
044	036 100100	/GG1/	Got	80MS
045	037	/SH/	Ship	160MS
046	038 100110	/ZH/	Azure	190MS
047	039 100111	/RR2/	Brain	120MS
050	040 101000	/FF/	Food	150MS
051	041	/KK2/	Sky	190MS
052	042	/KK1/	Can't	160MS
053	043	IZZI	Zoo	210MS
054	044 101 100	/NG/	Anchor	220MS
000	045 101101	/LL/	Lake	110MS
050	040 101110		Wool	180MS
007	047 101/11	AK/	Kepair	360MS
061	040 110000	/WH/	whig	200MS
062	049		yes	130MS
002	051 110 1		Cnurch	190MS
064	052 11001	/EKI/		160MS
065	053 110100	IOW/	r Ir Boou	300MS
066	054	/DH2/	Thou	2401/15
067	055	1991	Voet	2401/15
070	056	/NIN2/	No	901VIS
071	057 1110 0	/HH2/	Hoe	1901/15
072	058 1110 0	/OR/	Store	1801/15
073	059 11101	I/AR/	Alarm	2001/15
074	060	/YR/	Clear	250MS
075	061	IGG2/	Guest	40MS
076	062 11 0	/EL/	Saddle	190MS
077	063	/BB2/	Business	50MS
	111777		- 1000 (Hereit	so tan tan eng

OULIAO	
100MS	
200MS	
420MS	
260MS	
200100	
1001/05	
120MS	
210MS	
140MS	
140MS	
70MS	
140MS	
170MS	
70MS	
180MS	
100MS	
290MS	
250MS	
2801/15	
2001013	
1001/05	
TUUMS	
100MS	
100MS	
180MS	
120MS	
130MS	
80MS	
180MS	
100MS	
260MS	
370MS	
160MS	
140MS	
190MS	
80MS	
160MS	
100MS	
1201/15	
150MS	
1001/15	
1901/15	
1001015	
2101/15	
220MS	
TIUMS	
180MS	
360MS	
200MS	
130MS	
190MS	
160MS	
300MS	
240MS	
240MS	
90MS	
190MS	
180MS	
330MS	
290MS	
350MS	
40MS	
190MS	

N-CHANNEL ION IMPLANT (SOUND GENERATOR)

AY-3-8910A 276-1787

PROGRAMMABLE SOUND GENERATOR

GENERAL DESCRIPTION

The AY-3-8910A Programable Sound Generator (PSG) is an LSI circuit which can produce a wide variety of complex sounds under software control. The AY-3-8910A is manufactured in the Microelectronics N-Channel Ion Implant Process. Operation requires a single + 5V power supply, a TTL compatible clock, and a microprocessor controller.

The PSG is easily interfaced to any bus-oriented system. Its flexibility makes it useful in applications such as music synthesis, sound effects generation, audible alarms, tone signaling, and home computer usage. In order to generate sound effects while allowing the processor to perform other tasks, the PSG can continue to produce sound after the initial commands have been given by the control processor. The fact that realistic sound production often involves more than one component is satisfied by the three independently controllable analog sound-output channels available in the PSG. These analog sound-output channels can each provide 4 bits of logarithmic digital-to-analog conversion, greatly enhancing the dynamic range of the sounds produced.

All circuit control signals are digital in nature and may be provided directly by a miroprocessor/microcomputer. Therefore, one PSG can produce the full range of required sounds with no change in external circuitry. Since the frequency response of the PSG ranges from sub-audible at its lowest frequency to post-audible at its highest frequency, there are few sounds which are beyond reproduction.

FEATURES

- Full software control of sound generation
- Interfaces to most 8-bit and 16-bit microprocessors
- Three independently programmable analog outputs
- One or two 8-bit I/O ports
- Full 0° to 70°C operation

ABSOLUTE MAXIMUM RATING

V_{CC} and all other Input/Output

Voltages with Respect to V _{SS}	-0.3V to +8.0V
Storage Temperature	55°C to + 150°C
Operating Temperature	0°C to +70°C

PIN FUNCTIONS

DA7-DA0 (Input/Output/High Impedance)

Data/Address Bits 7-0: Pins 30-37

These 8 lines comprise the 8-bit bidirectional bus used by the microprocessor to send both data and addresses to the PSG, and to receive data from the PSG. In the address mode, DA3–DA0 select the internal register address $(0-17_8)$ and DA7–DA4 in conjunction with address inputs A9 and A8, form the chip select function. When the high order address bits are "incorrect," the bidirectional buffers are forced to a high impedance state.

Address 9, Address 8

A8 (input): Pin 25

A9 (input): Pin 24

High order address bits $\overline{A9}$ and A8 are fixed to recognize a "01" code. They may be left unconnected, as each is provided with either an on-chip pull-down (A9) or pull-up (A8) resistor. In noisy environments, however, it is recommended the A9 and A8 be tied to external ground and + 5V respectively, if they are not to be used.

RESET (Input): Pin 23

For initialization/power-on purposes, applying a low level input to the $\rm \overline{RESET}$ pin will reset all registers to $0_8.$ The $\rm \overline{RESET}$ pin is provided with an on-chip pull-up register.

CLOCK (Input): Pin 22

This TTL compatible input supplies the timing reference for the Tone, Noise, and Envelope Generators.

BDIR, BC2, BC1 (Inputs): Pins 27, 28, 29

BUS Direction, BUS Control 2, Bus Control 1

These bus control signals are generated directly by a microprocessor to control all bus operations internal and external to the PSG.

AY-3-8910A 276-1787

Analog Channel A, B, C (Outputs): Pins 4, 3, 38

Each of these signals is the output of its corresponding digital to analog converter, and provides 1V peak-peak (max) signal representing the complex sound waveshape generated by the PSG.

Pins 2, 5, 26, 39

These pins are for test purposes only and should be left open. Do not use as tie-points.

Vcc: Pin 40

Nominal + 5 Volt power supply to the PSG.

Vss: Pin 1

Ground reference for the PSG.

ARCHITECTURE:

The AY-3-8910A is a register oriented Programable Sound Generator (PSG). Communication between the processor and the PSG is based on the concept of memory-mapped I/O. Control commands are issued to the PSG by writing to 16 memory-mapped registers. Each of the 16 registers within the PSG is also readable so that the microprocessor can determine, if necessary, present states or stored data values. All functions of the PSG are controlled through the 16 registers which, once programmed, generate and sustain the sounds, thus freeing the system processor for other tasks.

REGISTER ARRAY:

The principal element of the PSG is the array of 16 read/write control registers. These 16 registers look to the CPU as a block of memory and, as such, occupy a 16-word block out of 1,024 possible addresses. The 10 address bits (8 bits on the common data/address bus, and 2 separate address bits) are decoded as follows:

A9	A8	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0		
0	1	0	0	0	0	0	0	0	0		
				THRO	DUGH						
0	0 1 0 0 0 0 1 1 1 1										
-					_	-	-	-			
HIGH ORDER (Chip Select)							LC ORI (Regist	OW DER er No.) (1995) (19		

The four low order address bits select one of the 16 registers $(RO-R17_8)$. The six high order address bits function as chip selects to control the tri-state bidirectional buffers (when the high order address bits are incorrect, the bidirectional buffers are forced to a high impedance state). High order address bits $\overline{A9}$, A8 are fixed in the PSG design to recognize a "01" code; high order address bits DA7-DA4 are programmed to recognize only a "0000" code. All addresses are latched internally. This internally latched address is updated and modified on every latch address signal presented to the PSG via the BDIR, BC2, and BC1 inputs. A latched address will remain valid until the receipt of a new address, enabling multiple reads and writes of the same register contents without the need for redundant re-addressing.

Conditioning of the Register Address Latch/Decoder and the Bidirectional Buffers to recognize the bus function required (Inactive, Latch Address, Write Data), is accomplished by the Bus Control Decode block.

AY-3-8910A 276-1787

SOUND GENERATING BLOCKS:

The basic blocks in the PSG which produce the programmed sounds include:

Tone Generators	Produce the basic square wave tone frequencies for each channel
Noise Generator	Produces a pulse width mod- ulated pseudo-random square wave
Mixers	Combine the outputs of the Tone Generators and the Noise Genera- tor; per channel (A, B, C).
Envelope Generator	Produces an envelope pattern which can be used to amplitude modulate the output of each Mixer.
Amplitude Control	Provides the D/A Converters with either a fixed or variable amplitude pattern. Fixed amplitude is under direct CPU control. Variable ampli- tude is accomplished via the output of the Envelope Generator.
D/A Converters	The three D/A Converters each produce a 16 level (max) output sig- nal as determined by the Amplitude Control.

OPERATION

Since all PSG functions are processor controlled by writing to the internal registers, a detailed description of the PSG operation may best be accomplished by relating each PSG function to control of the corresponding register. The function of creating or programming a specific sound effect logically follows the control sequence listed:

Operation	Registers	Function
Tone Generator	R0-R5	Program tone periods
Control		
Noise Generator	R6	Program noise period
Control		
Mixer Control	R7	Enable tone
		and/or noise on select-
		ed channels
Amplitude	R10-R12	Select fixed or variable
Control		(envelope) amplitudes
Envelope	R13-R15	Program envelope
Generator		period and select enve-
Control		lope pattern

Tone Generator Control

(Registers R0, R1, R2, R3, R4, R5)

The frequency of each square wave generated by the three Tone Generators (one each for Channels A, B, and C) is obtained by first dividing the input clock by 16 then by further dividing the result by the programmed 12-bit Tone Period value. Each 12-bit tone period value is obtained by combining the contents of the respective Coarse and Fine Tune registers, as illustrated:

Coarse Tune		Fine Tune			
Register	Channel	Register			
R1	А	RO			
R3	В	R2			
R5	С	R4			

AY-3-8910A 276-1787

The period of the output of the tone generator is therefore determined by:

 $16 \times TP \times P$ where P = the period of the input clock.

NOTE: If the Coarse and Fine Tune registers are both set to 000_8 , the resulting period will be minimum, i.e., the generated tone period will be as if the Coarse Tune register was set to 000_8 and the Fine Tune register set to 001_8 .

Noise Generator Control

(Register R6)

The frequency of the noise source is obtained by dividing the input clock by 16, then by further dividing the result by the programmed 5-bit Noise Period value. This 5-bit value consists of the lower 5 bits (B4–B0) of register R6, as illustrated:

Noise Period Register R6

Mixer Control—I/O Enable

(Register R7)

Register R7 is a multi-function $\overline{\text{ENABLE}}$ register which controls the three Noise/Tone Mixers.

The Mixers, previously described, combine the noise and tone frequencies for each of the three channels. The determination of combining neither/either/ both noise and tone frequencies on each channel is made by the state of bits B5–B0 of register R7, as illustrated.

The direction (input or output) of the general purpose I/O ports (I/OA and I/OB) is determined by the state of bits B7 and B6 of R7, as illustrated.

MIXER CONTROL REGISTER-R7

AY-3-8910A 276-1787

NOISE ENABLE TRUTH TABLE							TONE ENABLE TRUTH TABLE						
F	R7 Bit	S	Noi	ise Ena	abled	R	R7 Bits Tone Enabled				nabled		
B5	B4	B2	01	ı Chan	inel	B2	B1	BO	01	on Channel			
0	0	0	С	В	А	0	0	0	С	В	Α		
0	0	1	С	В	_	0	0	1	C	В	-		
0	1	0	C		A	0	1	0	C	—	Α		
0	1	1	C		_	0	1	1	C	-	-		
1	0	0	·	В	А	1	0	0	-	В	Α		
1	0	1	-	В	· - ·	1	0	1	-	В	-		
1	1	0	-	_	А	1	1	0	-	-	А		
1	1	1	-		_	1	1	1	-	_	. 	and the seat	

	in the first of	I/O POR	T TRUTH TABL	E					
	R7	Bits	I/O Port S	Status					
	B7	B6	6 I/OB I/OA						
1	0	0	Input	Input					
	0	1	Input	Output					
	1	0	Output	Input					
	1	1	Output	Output					

NOTE: Disabling noise and tone does not turn off a channel. Turning a channel off can only be accomplished by writing all zeros into the corresponding Amplitude Control Register.

Amplitude Control

(Registers R10, R11, R12)

The amplitude of the signals generated by each of the three D/A Converters (one each for Channels A, B, and C) is determined by the content of the lower bits (B4–B0) of registers R10, R11, and R12 as illustrated.

These five bits consists of a 1-bit mode select ("M" bit) and a 4-bit "fixed" amplitude level (L3-L0). When the M bit is low, the output level of the analog channel is defined by the 4-bit "fixed" amplitude level of the Amplitude Control Register. This amplitude level is fixed in the sense that the amplitude level is under direct control of the system processor. When the M bit is high, the output level of the analog channel is defined by the 4-bits of the Envelope Generator (bits E3-E0). The amplitude mode bit can also be thought of as an "envelope enable" bit.

Envelope Generator Control

To accomplish the generation of complex envelope patterns, two independent methods of control are provided: first, it is possible to vary the frequency of the envelope using registers R13 and R14; second, the relative shape and cycle pattern of the envelope can be varied using register R15. The following paragraphs explain the details of the envelope control functions, describing first the envelope period control and then the envelope shape/cycle control. (See Figures 1 and 2).

AY-3-8910A 276-1787

Envelope Period Control

(Registers R13, R14)

The frequency of the envelope is obtained by first dividing the input clock by 256, then by further dividing the result by the programmed 16-bit Envelope Period value. This 16-bit value is obtained by combining the contents of the Envelope Coarse and Fine Tune registers, as illustrated:

16-bit Envelope Period (EP) to Envelope Generator Thus the envelope period is given by: $256 \times EP \times P$ Where P = period of input clock

NOTE: If the Coarse and Fine Tune registers are both set to 000_8 , the resulting period will be minimum, i.e., the generated tone period will be as if the Coarse Tune register was set to 000_8 and the Fine Tune register set to 001_8 .

Envelope Shape/Cycle Control

(Register R15)

The Envelope Generator further divides the envelope period by 16, producing a 16-state per cycle envelope pattern as defined by the 4-bit counter output, E3, E2, E1 and E0. The particular shape and cycle pattern of any desired envelope is accomplished by controlling the count pattern of the 4-bit counter. (See Figures 4 and 5).

This envelope shape/cycle control is contained in the lower 4 bits (B3–B0) of register R15. Each of these 4 bits controls a function in the envelope generator, as illustrated:

Envelope Shape/Cycle Control Register (R15)

111

AY-3-8910A 276-1787

D/A CONVERTER OPERATION

Since the primary use of the PSG is to produce sound for the non-linear amplitude detection mechanism of the human ear, the D/A conversion is performed in logarithmic steps with a normalized voltage range from 0 to 1 volt. The specific amplitude control of each of the three D/A Converters is accomplished by the three sets of 4 bit outputs of the Amplitude Control block, while the Mixer outputs provide the base signal frequency (Noise and/or Tone). (See Fig. 3).

Fig. 3 D/A Converter Output

Fig. 4 Singletone With Envelope Shape/Cycle Pattern 1010

Fig. 5 Mixture of Three Tones With Fixed Amplitudes

AY-3-8910A 276-1787

STATE TIMING

While the state flow for many microprocessors can be somewhat involved for certain operations, the sequence of events necessary to control the PSG is simple and straightforward. Each of the three major state sequences (Latch Address, Write to PSG, and Read from PSG) consists of several operations (indicated below by rectangular blocks), defined by the pattern of bus control signals (BDIR, BC1).

The functional operation and relative timing of the PSG control sequences are described in the following paragraphs.

ADDRESS PSG REGISTER SEQUENCE

The Latch Address sequence is normally an integral part of the write or read sequences, but for simplicity is illustrated here as in individual sequence. Depending upon the processor used, the program sequence will normally require four principal microstates: (1) send NACT (inactive); (2) send INTAK (latch address); (3) put address on bus; (4) send NACT (inactive).

Analog Channel Output Test Circuit

AY-3-8910A 276-1787

WRITE DATA TO PSG SEQUENCE #1

The Write to PSG sequence, which would normally follow immediately after an address sequence, requires four principal microstates: (1) send NACT inactive); (2) put data on bus; (3) send DWS (write to PSG); (4) send NACT (inactive).

READ DATA FROM PSG SEQUENCE #2

As with the Write to PSG sequence, the Read from PSG sequence would also normally follow immediately after an address sequence. The four principal microstates of the read sequence are: (1) send NACT (inactive); (2) send DTB (read from PSG); (3) read data on bus; (4) send NACT (inactive).

FM RECEIVER

FM RECEIVER

GENERAL DESCRIPTION

The TDA7000 is a monolithic integrated circuit for mono FM portable radios, where a minimum on peripheral components is important (small dimensions and low costs).

The IC has an FLL (Frequency-Locked-Loop) system with an intermediate frequency of 70 kHz. The i.f. selectivity is obtained by active RC filters. The only function which needs alignment is the resonant circuit for the oscillator, thus selecting the reception frequency. Spurious reception is avoided by means of a mute circuit, which also eliminates too noisy input signals. Special precautions are taken to meet the radiation requirements.

The TDA7000 includes the R.F. input stage, mixer, local oscillator, I.F. amplifier/limiter, phase demodulator, mute detector and mute switch.

ABSOLUTE MAXIMUM RATINGS

Supply voltage range (pin 5) (Vp) 12 V
Supply current at $V_p = 4.5 V (IP) \dots 8 mA$
Power
R.F. input frequency range (f _{rf}) 1.5 to 110 MHz
Sensitivity for - 3 dB limiting
(e.m.f. voltage)
(source impedance: 75 Ω ; mute disabled) 1.5 μ V
Signal handling (e.m.f. voltage)
(source impedance: 75 Ω)
A.F. output voltage at $R_L = 22k\Omega$

TYPICAL APPLICATIONS

AUDIO AMPLIFIER AND DETUNING INDICATOR

CIRCUITS

Audio output stages suitable for use with the TDA7000 are shown in Fig. E and F. Figure G shows how the muting signal can be used to operate a LED to give an indication of detuning.

Fig. E A 0.4mW transistor audio output stage without volume control for driving an earpiece.

by the mute signal from the TDA7000

FM RECEIVER

TDA7000 276-1304

TYPICAL APPLICATION

Fig. A The TDA7000 as a variable capacitor tuned f.m. broadcast monitor.

C7 to C12, C17 and C18:

Filter and demodulator capacitors. The values shown are for an i.f. of 70 kHz. For other intermediate frequencies, the values of these capacitors must be changed in inverse proportion to the i.f. change.

C14:

Decouples the reverse r.f. input. It must be connected to the common return via a good quality short connection to ensure a low-impedance path. Inductive or capacitive coupling between C_{14} and the local-oscillator circuit or i.f. output components must be avoided.

C₁₅:

Decouples the d.c. feedback for i.f. limiter/amplifier LA1.

C₁₉ and C₂₁:

Local-oscillator tuning capacitors. Their values depend on the required tuning range and on the value of tuning capacitor $C_{\rm 20}.$

C22, C23, L1, L2:

The values given are for an r.f. bandpass filter with Q = 4 for the European and U.S.A. domestic f.m. broadcast band (87.5 MHz to 108 MHz). For reception of the Japanese f.m. broadcast band (76 MHz to 91 MHz), L₁ must be increased to 78 nH and L₂ must be increased to 150 nH. If stopband attenuation for high level a.m. or tv signals is not required, L₂ and C₂₂ can be omitted and C₂₃ changed to 220 pF.

R₂:

The load for the audio output current source. It determines the audio output level, but its value must not exceed 22 k Ω for V_p = 4.5 V, or 47 k Ω for V_p = 9 V.

TDA7000 276-1304

TYPICAL APPLICATIONS

Circuit with variable-capacitance diode tuning

Since it is only necessary to tune the local-oscillator coil, it is very simple to modify the circuit of Fig. A for variable-capacitance diode tuning. The modifications are shown in Fig. B.

Narrow-band f.m. receiver

The TDA7000 can also be used for reception of narrow-band f.m. signals. In this case, the local-oscillator is crystal-controlled as shown in Fig. C and there is therefore hardly any compression of the i.f. swing by the FLL. The deviation of the transmitted carrier frequency due to modulation must therefore be limited to prevent severe distortion of the demodulated audio signal.

The component values in Fig. C result in an i.f. of 4.5 kHz and an i.f. bandwidth of 5 kHz (Fig. D). If the i.f. is multiplied by N, the values of capacitors C_{17} and C_{18} in the all-pass filters and the values of filter capacitors C_7 , C_8 , C_{10} , C_{10} , C_{11} , and C_{12} must be multiplied by 1/N. For improved i.f. selectivity to achieve greater adjacent channel attenuation, second-order networks can be used in place of C_{10} and C_{11} .

In this circuit the detuning noise generator is not used. Since the circuit is mainly for reception of audio signals, the audio output must be passed through a low-pass Chebyshev filter to suppress i.f. harmonics.

FM RECEIVER

Fig. H Audio output as a function of input e.m.f. The curves numbered 1 were measured with the muting system active. The curves numbered 2 were measured with the muting system disabled by injecting about 20 μ A into pin 1 of the TDA7000. The input frequency was 96 MHz modulated with 1 kHz with a deviation of \pm 22.5 kHz for the output level curves, and \pm 75 kHz for the distortion curve.

QUICK CASE REFERENCE

119

QUICK CASE REFERENCE

SEMICONDUCTOR CROSS REFERENCE NOTES

- N1 Two required, connect in series—anode to anode.
- N2 Two required, connect in series—cathode to cathode.
- N3 Two required, connect in series—anode to cathode.
- N5 Four required, connect as in original circuit.
- N6 Five required, connect as in original circuit.
- N7 Six required, connect as in original circuit.
- N8 Seven required, connect as in original circuit.
- N9 Eight required, connect as in original circuit.

QUICK INDEX

CATEGORY

A TO D CONVERTER (LINCMOS)	
AUDIO (Linear)	
AUDIO (N-Channel MOS)	
COMPARATOR (Quad)(Linear)	
DIGITAL (CMOS)	
(Memory)	
(TTL)	
DIODE (General Purpose)	5
DIODE (Zener)	5
DRIVER (Interface)	
FM RECEIVER	
LED FLASHER/OSC (Linear)	
MICROCOMPUTER (8-Bit)	
OPERATIONAL AMP (Linear)	
OPTOELECTRONIC	
RECEIVER (Interface)	
RECTIFIER (Bridge) *	
SOUND GENERATOR (Programmable)	
SCR	
THYRISTOR	
TIMER (LinCMOS)	
TIMER (Linear)	
TONE DECODER (Linear)	
TRANSISTOR (BiPolar)	
TRANSISTOR (FET)	
TRIAC	
VARISTOR	
VOLTAGE REG. (Linear)	

MASTER INDEX BY CATALOG NUMBER

CATALOG NUMBER	GENERIC NO. OR DESCRIPTION	PAGE NUMBER	CATALOG NUMBER	GENERIC NO. OR DESCRIPTION	PAGE NUMBER	CATALOG NUMBER	GENERIC NO. OR DESCRIPTION	PAGE NUMBER	
276-007	741	62	276-1067	SCR	12	276-1771	7812	70	
276-018	PR5534S	13	276-1101	1N4001	5	276-1772	7815	70	
276-021	SLP-236B(Y)	13	276-1102	1N4003	5	276-1778	317T	67	
276-022	SLP-236B(G)	13	276-1103	1N4004	5	276-1784	SPO256	96	
276-025	R9-56	13	276-1104	1N4005	5	276-1786	CTC256AL2	77	
276-026	MINI RED LED	13	276-1114	PTC205	5	276-1787	AY-3-8910A	106	
276-030	F336GD	15	276-1122	1N914/4148	5	276-1796	TLC548	50	
276-033	TLR-147	13	276-1123	1N34A	5	276-1797	UM3482	27	
276-035	XC-5491	19	276-1141	1N5400	5	276-1801	7400	39	
276-036	F336HD	15	276-1143	1N5402	5	276-1802	7404	40	
276-037	SLP-235B	13	276-1144	1N5404	5	276-1805	7447	42	
276-038	1458	63	276-1146	BRIDGE RECT	5	276-1808	7490	44	
276-041	RED LED	13	276-1151	BRIDGE RECT	5	276-1822	7408	41	
276-053	DISPLAY	18	276-1152	BRIDGE RECT	5	276-2009	MPS2222A	6	
276-064	EL-811HR	17	276-1161	BRIDGE RECT	5	276-2016	MPS3904	6	
276-065	369HHD	13	276-1165	DIODE	5	276-2017	TIP31	6	
276-066A	SLA-591LT3	13	276-1171	BRIDGE RECT	5	276-2020	TIP3055	6	
276-068	RED LED	13	276-1173	BRIDGE RECT	5	276-2023	MPS2907	6	
276-069	GREEN LED	13	276-1180	BRIDGE RECT	5	276-2027	MJE34	6	
276-075	MAN74	17	276-1181	BRIDGE RECT	5	276-2030	2N3053	6	
276-081	B1001R	15	276-1185	BRIDGE RECT	5	276-2035	2N3819	9	
276-088	SLP-888A	13	276-1251	MSM2764RS	35	276-2041	2N3055	6	
276-116	PHOTOCELL	18	276-1252	TMS4256	36	276-2043	MJ2955	6	
276-124	SOLAR CELL	20	276-1303	SSI202	74	276-2055	2SC1308	6	
276-134	MOC3010	16	276-1304	TDA7000	115	276-2058	2N4401	6	
276-142	IR LED/DET PAIR	20	276-1305	TDA1520A	58	276-2062	MPF102	7	
276-143	TIL906-1	14	276-1604	2N3906	6	276-2068	TIP120	6	
276-145	TIL414 .	19	276-1617	2N2222	6	276-2072	IRF511	7	
276-561	1N4735	5	276-1705	3909	73	276-2074	BS170	10	
276-562	1N4739	5	276-1711	324	64	276-2401	4001	21	
276-563	1N4742	5	276-1712	339	71	276-2411	4011	22	
276-564	1N4744	5	276-1715	353	60	276-2413	4013	23	
276-565	1N4733	5	276-1718	TLC555	54	276-2417	4017	24	
276-568	ERZ-C20DK201U	11	276-1721	567	72	276-2449	4049	25	
276-570	ERZ-C14DK201U	11	276-1723	NE555	65	276-2466	4066	26	
276-703	383	55	276-1728	NE556	66	276-2506	HYB4164-P2	29	
276-705	TA7205AP	57	276-1731	386	56	276-2520	MC1488	45	
276-1000	TRIAC	12	276-1740	723	69	276-2521	MC1489	48	
276-1020	SCR	12	276-1770	7805	70		Annona la come		

IMPORTANT SUGGESTIONS ON THE USE AND REPLACEMENT OF TRANSISTORS

You can use various styles and sizes of transistors in any given circuit application, as long as the electrical characteristics of the device are within the required range of operation. Thus, a tab-type device can be used to replace a TO-3 or TO-66 case device; or a small epoxy-type device can be used in place of TO-5 or other size transistor.

Generally speaking, you must observe the following maximum characteristics of a transistor when contemplating substitution or selection:

Power dissipation Maximum collector current Maximum collector-to-emitter voltage Maximum collector-to-base voltage

Maximum emitter-to-base voltage

Also, it is useful to consider the following characteristics for actual circuit operation:

Gain

Frequency limitations

Caution: It may be necessary in some cases to adjust bias values to achieve required operation. With tuned circuits, it is a good practice to check alignment after replacing any transistor.

When replacing power transistors, always check driver devices to be sure they are OK. Also, check other circuit components to be sure they were not shorted (or otherwise defective) when the original device failed. If you fail to correct such problems before applying power to the circuit once again, the replacement transistor could easily be permanently damaged. Be sure to use proper heat-sink precautions and use silicon grease to reduce the thermal resistance between the case of the transistor and the heat-sink.

Always observe temperature limitations as specified with transistor ratings.

It almost goes without saying, but let us remind you anyway—

Always observe voltage polarity with all semiconductor devices.

CROSS-REFERENCE/SUBSTITUTION LISTING

Most users of semiconductors realize that it is almost impossible to guarantee absolute equivalents (as in the case of tubes). Thus, the only way to create replacement or cross-reference listings is by carefully evaluating each characteristic of both devices (original transistor and the possible alternate). This is how the Technical Staff of Radio Shack went about preparing the following cross-reference/replacement lists.

IMPORTANT NOTE

We caution you that in many cases the listed cross reference ARCHER device may be different in appearance, size or mounting style. Thus, before beginning replacement or installation procedures, check to be sure you have enough room for proper mounting.

Also, when making substitutions or replacements in radio or high frequency circuitry, it may be necessary to realign tunable circuit elements. This is true even when making **exact** replacements (junction capacitances normally vary between devices even from the same production run).

Information contained in this guide is based on the latest available data and is believed to be accurate. Every care has been taken to assure technical accuracy. However, Radio Shack does not assume responsibility for any contingencies of the use of this information. Nor does Radio Shack assume any responsibility for any infringements of patents or other rights of third parties which may result from its use.

When you are looking for a specific number and it does not show up in the following listing—refer to the technical data provided for our line of ARCHER devices. With this information you probably will be able to make a suitable substitution.

MAJOR SEMICONDUCTOR COMPONENTS

MAJOR SEMICONDUCTOR COMPONENTS

*Light Activated SCS also available.

GLOSSARY OF WORDS, SYMBOLS AND ABBREVIATIONS

The following letter symbols and abbreviations are recommended by the Joint Electron Device Engineering Council ([EDEC) of the Electronic Industries Association (EIA) and the National Electrical Manufacturers Association (NEMA) for use in semiconductor device data sheets and specifications.

- A.a -Anode
- B, b -Base
- bfs -Common-source small-signal forward transfer susceptance
- -Common-source small-signal input susceptance **b**_{is}
- -Common-source small-signal output susceptance bos
- -Common-source small-signal reverse transfer brs susceptance
- C, c --Collector
- Ccb -Collector-base interterminal capacitance
- \mathbf{C}_{ce} -Collector-emitter interterminal capacitance
- -Drain-source capacitance Cds
- Cdu -Drain-substrate capacitance
- Ceb -Emitter-base interterminal capacitance
- Cibo -Common-base open-circuit input capacitance
- Cibs--Common-base short-circuit input capacitance
- -Common-emitter open-circuit input capacitance Cieo
- -Common-emitter short-circuit input capacitance Cies
- -Common-source short-circuit input capacitance Ciss
- Cobo -Common-base open-circuit output capacitance
- Cobs -Common-base short-circuit output capacitance
- Coeo -Common-emitter open-circuit output capacitance
- Common-emitter short-circuit output capaci-Coes tance
- Coss -Common-source short-circuit output capacitance
- -Common-base short-circuit reverse transfer Crbs capacitance
- Cres -Common-collector short-circuit reverse transfer capacitance
- Cres -Common-emitter short-circuit reverse transfer capacitance
- Crss -Common-source short-circuit reverse transfer capacitance
- Ctc -Collector depletion-layer capacitance
- -Emitter depletion-layer capacitance Cte
- D, d -Drain
- E, e -- Emitter
- n -Intrinsic standoff ratio
- fhfb -Common-base small-signal short-circuit forward current transfer ratio cutoff frequency
- -Common-collector small-signal short-circuit forfhfc ward current transfer ratio cutoff frequency
- -Common-emitter small-signal short-circuit forfhfe ward current transfer ratio cutoff frequency
- fmax -Maximum frequency of oscillation
- \mathbf{F}_{T} -Transition frequency (frequency at which common-emitter small-signal forward current transfer ratio extrapolates to unity)
- **G**, **g** —Gate \mathbf{g}_{fs} —Common-source small-signal forward transfer conductance
- -Common-source small-signal input conductance Bis
- **g**_{MB} —Common-base static transconductance
- **g**_{MC} —Common-collector static transconductance
- **g**_{ME} —Common-emitter static transconductance
- -Common-source small-signal output conducgos tance
- GPB —Common-base large-signal insertion power gain
- \mathbf{G}_{pb} -Common-base small-signal insertion power gain GPC -Common-collector large-signal insertion power
- gain

- -Common-collector small-signal insertion power Gpc gain
- Common-emitter large-signal insertion power GPE gain
- Common-emitter small-signal insertion power Gpe gain
- \mathbf{G}_{pg} -Common-gate small-signal insertion power gain Common-source small-signal insertion power Gps
- gain
- Common-source small-signal reverse transfer grs conductance
- GTB Common-base large-signal transducer power gain
- -Common-base small-signal transducer power Gtb gain
- G_{TC} --Common-collector large-signal transducer power gain
- Gtc Common-collector small-signal transducer power gain
- GTE -Common-emitter large-signal transducer power gain
- -Common-emitter small-signal transducer power Gte gain
- Gig -Common-gate small-signal transducer power gain
- Gis -Common-source small-signal transducer power gain
- hFB -Common-base static forward current transfer ratio
- hfb -Common-base small-signal short-circuit forward current transfer ratio
- -Common-collector static forward current trans**h**_{FC} fer ratio
- -Common-collector small-signal short-circuit forh_{fc} ward current transfer ratio
- -Common-emitter static forward current trans**h**_{FE} fer ratio
- -Common-emitter small-signal short-circuit forhfe ward current transfer ratio
- **h**_{FEL} Inherent large-signal forward current transfer ratio
- -Common-base static input resistance hIB
- -Common-base small-signal short-circuit input hib impedance
- hIC -Common-collector static input resistance
- \mathbf{h}_{ic} -Common-collector small-signal short-circuit input impedance
- **h**IE -Common-emitter static input resistance
- -Common-emitter small-signal short-circuit input hie impedance
- h_{ie(imag)}—Imaginary part of common-emitter small-signal short-circuit input impedance
- hie(real) -Real part of common-emitter small-signal shortcircuit input impedance
- Common-base small-signal open-circuit output hob admittance
- hoc Common-collector small-signal open-circuit output admittance
- hoe Common-emitter small-signal open-circuit output admittance
- hoe(imag) Imaginary part of common-emitter small-signal open-circuit output admittance

- h_{oe(real)} —Real part of common-emitter small-signal opencircuit output admittance
- h_{rb} —Common-base small-signal open-circuit reverse voltage transfer ratio
- h_{rc} —Common-collector small-signal open-circuit reverse voltage transfer ratio
- h_{re} —Common-emitter small-signal open-circuit reverse voltage transfer ratio
- I_B —Base-terminal dc current
- Ib —Alternating component (rms value) of base-terminal current
- i_B Instantaneous total value of base-terminal current
- IBEV -Base cutoff current, dc
- I_{B2(mod)}—Interbase modulated current I_C —Collector-terminal dc current
- I_C —Collector-terminal dc current I_c —Alternating component (rms value) of collectorterminal current
- ic —Instantaneous total value of collector-terminal
- ICBO -Collector cutoff current (dc), emitter open
- ICEO —Collector cutoff current (dc), base open
- I_{CER} —Collector cutoff current (dc), specified resistance between base and emitter
- I_{CES} —Collector cutoff current (dc), base shorted to emitter
- I_{CEV} —Collector cutoff current (dc), specified voltage between base and emitter
- I_{CEX} —Collector cutoff current (dc), specified circuit between base and emitter
- I_D —Drain current, dc
- I_{D(off)} —Drain cutoff current
- ID(on) -On-state drain current
- IDSS -Zero-gate-voltage drain current
- IE —Emitter-terminal dc current
- Ie —Alternating component (rms value) of emitterterminal current
- i_E —Instantaneous total value of emitter-terminal current
- IEBO -- Emitter cutoff current (dc), collector open
- IEB20 Emitter reverse current
- I_{EC(ofs)} —Emitter-collector offset current
- I_{ECS} —Emitter cutoff current (dc), base short-circuited to collector
- IE1E2(off)-Emitter cutoff current
- IF —For voltage-regulator and voltage-reference diodes: dc forward current. For signal diodes and rectifier diodes: dc forward current (no alternating component)
- If —Alternating component of forward current (rms value)
- iF -Instantaneous total forward current

 $I_{F(AV)}$ — Forward current, dc (with alternating component)

- IFM Maximum (peak) total forward current
- IF(OV) -Forward current, overload
- IFRM -- Maximum (peak) forward current, repetitive
- IF(RMS) Total rms forward current
- IFSM -Maximum (peak) forward current, surge
- IG –Gate current, dc
- IGF -Forward gate current
- IGR -Reverse gate current
- I_{GSS} —Reverse gate current, drain short-circuited to source
- I_{CSSF} —Forward gate current, drain short-circuited to source
- I_{CSSR} —Reverse gate current, drain short-circuited to source
- I₁ Inflection-point current

- Im(h_{ie})—Imaginary part of common-emitter small-signal short-circuit input impedance
- Im(h_{oe})—Imaginary part of common-emitter small-signal open-circuit output admittance
- $I_{\rm O} \qquad -{\rm Average\ forward\ current,\ 180^{\circ}\ conduction\ angle,} \\ 60\text{-Hz\ half\ sine\ wave}$
- IP -Peak-point current
- IR —For voltage-regulator and voltage-reference diodes: dc reverse current. For signal diodes and rectifier diodes: dc reverse current (no alternating component)
- Ir —Alternating component of reverse current (rms value)
- i_R —Instantaneous total reverse current
- $I_{R(AV)} Reverse \ current, \ dc \ (with \ alternating \ component)$
- IRM -- Maximum (peak) total reverse current
- IRRM -Maximum (peak) reverse current, repetitive
- IR(RMS) Total rms reverse current
- IRSM -Maximum (peak) surge reverse current
- Is -Source current, dc
- I_{SDS} —Zero-gate-voltage source current
- I_{S(off)} -Source cutoff current
- Iv -Valley-point current
- Iz -Regulator current, reference current (dc)
- I_{ZK} —Regulator current, reference current (dc near breakdown knee)
- I_{ZM} —Regulator current, reference current (dc maximum rated current)
- K, k Cathode
- L_c —Conversion loss
- M Figure of merit
- NF_o —Overall noise figure
- NR_o -Output noise ratio
- **P**_{BE} —Power input (dc) to base, common emitter
- **p**_{BE} —Instantaneous total power input to base, common emitter
- **P**_{CB} Power input (dc) to collector, common base
- \mathbf{p}_{CB} —Instantaneous total power input to collector, common base
- \mathbf{P}_{CE} —Power input (dc) to collector, common emitter
- **p**_{CE} Instantaneous total power input to collector, common emitter
- **P**_{EB} —Power input (dc) to emitter, common base
- **p**_{EB} —Instantaneous total power input to emitter, common base
- **P**_F —Forward power dissipation, dc (no alternating component)
- **p**_F —Instantaneous total forward power dissipation
- $\mathbf{P}_{F(AV)}$ —Forward power dissipation, dc (with alternating component)
- **P**_{FM} —Maximum (peak) total forward power dissipation
- P_{IB} —Common-base large-signal input power
- pib -Common-base small-signal input power
- P_{IC} —Common-collector large-signal input power
- **p**_{ic} —Common-collector small-signal input power
- **P**_{IE} —Common-emitter large-signal input power
- **p**_{ie} —Common-emitter small-signal input power
- **P**_{OB} —Common-base large-signal output power
- **p**ob —Common-base small-signal output power
- Poc -Common-collector large-signal output power
- poc -Common-collector small-signal output power
- POE -Common-emitter large-signal output power
- **p**_{oe} -Common-emitter small-signal output power
- **P**_R —Reverse power dissipation, dc (no alternating component)
- **p**_R —Instantaneous total reverse power dissipation
- $\mathbf{P}_{R(AV)}$ —Reverse power dissipation, dc (with alternating component)

P_{RM} —Maximum (peak) total reverse power dissipation -Total nonreactive power input to all terminals PT -Nonreactive power input, instantaneous total, to PT all terminals Qs -Stored charge **r**_{BB} — Interbase resistance r_bC_c --Collector-base time constant r_{CE(sat)} -Saturation resistance, collector-to-emitter rDS(on) -Static drain-source on-state resistance rds(on) -Small-signal drain-source on-state resistance Re(hie) - Real part of common-emitter small-signal shortcircuit input impedance Re(hoe) - Real part of common-emitter small-signal opencircuit output admittance re1e2(on) - Small-signal emitter-emitter on-state resistance -Dynamic resistance at inflection point $\mathbf{R}_{\boldsymbol{\theta}}$ -Thermal resistance $R_{\Theta CA}$ —Thermal resistance, case to ambient $R_{\Theta JA}$ —Thermal resistance, junction to ambient $\mathbf{R}_{\Theta IC}$ —Thermal resistance, junction to case S, s -Source TA -Ambient temperature or free-air temperature TC -Case temperature -Delay time td td(off) -Turn-off delay time $t_{d(on)}$ —Turn-on delay time -Fall time to -Forward recovery time tfr T -Junction temperature -Turn-off time toff -Turn-on time ton tp -Pulse time -Rise time t_r -Reverse recovery time trr te -Storage time TSS - Tangential signal sensitivity U, u -- Bulk (substrate) **V**_{BB} — Base supply voltage (dc) VBC -Average or dc voltage, base to collector Vbc -Instantaneous value of alternating component of base-collector voltage V_{BE} — Average or dc voltage, base to emitter v_{be} -- Instantaneous value of alternating component of base-emitter voltage V_(BR) -Breakdown voltage (dc) v(BR) -Breakdown voltage (instantaneous total) $V_{(BR)CBO}$ —Collector-base breakdown voltage, emitter open V(BR)CEO -Collector-emitter breakdown voltage, base open V(BR)CER -Collector-emitter breakown voltage, resistance between base and emitter V(BR)CES -Collector-emitter breakdown voltage, base shorted to emitter V_{(BR)CEV} —Collector-emitter breakdown voltage, specified voltage between base and emitter V_{(BR)CEX} -Collector-emitter breakdown voltage, specified circuit between base and emitter V(BR)EBO --Emitter-base breakdown voltage, collector open V_{(BR)ECO} -Emitter-collector breakdown voltage, base V_{(BR)E1E2} -Emitter-emitter breakdown voltage V_{(BR)GSS} —Gate-source breakdown voltage V(BR)GSSF-Forward gate-source breakdown voltage V_{(BR)GSSR}-Reverse gate-source breakdown voltage V_{B2B1} — Interbase voltage

 V_{CB} —Average or dc voltage, collector to base

- vcb -- Instantaneous value of alternating component of collector-base voltage
- V_{CB(fl)} —Collector-base dc open-circuit voltage (floating potential)
- VCBO -Collector-base voltage, dc, emitter open
- V_{CC} —Collector supply voltage (dc)
- V_{CE} Average or dc voltage, collector to emitter
- v_{ce} —Instantaneous value of alternating component of collector-emitter voltage
- V_{CE(fl)}—Collector-emitter dc open-circuit voltage (floating potential)
- VCEO -Collector-emitter voltage (dc), base open
- V_{CE(ofs)} -Collector-emitter offset voltage
- VCER -Collector-emitter voltage (dc), resistance between base and emitter
- VCES -Collector-emitter voltage (dc), base shorted to emitter
- V_{CE(sat)} -Collector-emitter dc saturation voltage
- V_{CEV} —Collector-emitter voltage (dc), specified voltage between base and emitter
- V_{CEX} -Collector-emitter voltage (dc), specified circuit between base and emitter
- V_{DD} Drain supply voltage (dc)
- V_{DG} Drain-gate voltage
- V_{DS} Drain-source voltage
- V_{DS(on)} -Drain-source on-state voltage

- -Instantaneous value of alternating component Veb of emitter-base voltage
- V_{EB(fl)}-Emitter-base dc open-circuit voltage (floating potential)
- VEBO -Emitter-base voltage (dc), collector open
- V_{EB1(sat)}—Emitter saturation voltage
- V_{EC} —Average or dc voltage, emitter to collector v_{ec} —Instantaneous value of alternating component
- of emitter-collector voltage
- V_{EC(fl)}-Emitter-collector dc open-circuit voltage (floating potential)
- V_{EC(ofs)} Emitter-collector offset voltage
- **V**_{EE} —Emitter supply voltage (dc)
- V_F -For voltage-regulator and voltage-reference diodes: dc forward voltage. For signal diodes and rectifier diodes: dc forward voltage (no alternating component)
- Vf -Alternating component of forward voltage (rms value)
- VF -Instantaneous total forward voltage
- $V_{F(AV)}$ —Forward voltage, dc (with alternating component)
- VFM -Maximum (peak) total forward voltage
- V_{F(RMS)}-Total rms forward voltage
- $\begin{array}{lll} V_{\rm GG} & -Gate \ supply \ voltage \ (dc) \\ V_{\rm GS} & -Gate \ source \ voltage \end{array}$
- V_{GSF} Forward gate-source voltage
- V_{GS(off)} -Gate-source cutoff voltage
- V_{GSR} -Reverse gate-source voltage
- V_{GS(th)} —Gate-source threshold voltage
- **V**_{GU} Gate-substrate voltage
- V₁ Inflection-point voltage
- VOB1 -Base-1 peak voltage
- V_P —Peak-point voltage V_{PP} —Projected peak-point voltage
- VR -For voltage-regulator and voltage-reference diiodes: dc reverse voltage. For signal diodes and rectifier diodes: dc reverse voltage (no alternating component)
- Vr -Alternating component of reverse voltage (rms value)

- **v**_R —Instantaneous total reverse voltage
- $V_{R(AV)}$ -Reverse voltage, dc (with alternating component)
- V_{RM} —Maximum (peak) total reverse voltage
- V_{RRM} Repetitive peak reverse voltage
- $V_{R(RMS)}$ —Total rms reverse voltage V_{RSM} —Nonrepetitive peak reverse voltage
- V_{RT} —Reach-through voltage
- V_{RWM} —Working peak reverse voltage
- $V_{\rm SS}$ —Source supply voltage (dc)
- V_{SU} —Source-substrate voltage
- $\mathbf{V}_{(TO)}$ —Threshold voltage
- V_{v} —Valley-point voltage
- V_z -Regulator voltage, reference voltage (dc)
- V_{ZM} —Regulator voltage, reference voltage (dc at maximum rated current)
- y_{fb} —Common-base small-signal short-circuit forward transfer admittance
- y_{fc} —Common-collector small-signal short-circuit forward transfer admittance
- y_{fe} —Common-emitter small-signal short-circuit forward transfer admittance
- y_{fs} —Common-source small-signal short-circuit forward transfer admittance
- y_{fs(imag)}—Common-source small-signal forward transfer susceptance
- $y_{fs(real)}$ —Common-source small-signal forward transfer conductance
- \mathbf{y}_{ib} —Common-base small-signal short-circuit input admittance
- y_{ic} —Common-collector small-signal short-circuit input admittance
- \mathbf{y}_{ie} —Common-emitter small-signal short-circuit input admittance
- **y**_{ie(imag)}—Imaginary part of small-signal short-circuit input admittance (common-emitter)
- y_{ie(real)} —Real part of small-signal short-circuit input admittance (common-emitter)
- y_{is} —Common-source small-signal short-circuit input admittance
- y_{is(imag)}—Common-source small-signal input susceptance
- **y** _{is(real)}—Common-source small-signal input conductance

- **y**_{ob} —Common-base small-signal short-circuit output admittance
- y_{oc} --Common-collector small-signal short-circuit output admittance
- y_{oe} —Common-emitter small-signal short-circuit output admittance
- **y**_{oe(imag)}—Imaginary part of small-signal short-circuit output admittance (common-emitter)
- y_{oe(real)} -Real part of small-signal short-circuit output admittance (common-emitter)
- yos —Common-source small-signal short-circuit output admittance
- $\mathbf{y}_{os(imag)}$ —Common-source small-signal output susceptance
- $y_{\text{os}(\text{real})} Common-source \text{ small-signal output conductance} \\ tance$
- **y**_{rb} —Common-base small-signal short-circuit reverse transfer admittance
- **y**_{rc} —Common-collector small-signal short-circuit reverse transfer admittance
- **y**_{re} —Common-emitter small-signal short-circuit reverse transfer admittance
- \mathbf{y}_{rs} —Common-source small-signal short-circuit reverse transfer admittance
- $\mathbf{y}_{rs(imag)}$ —Common-source small-signal reverse transfer susceptance
- $\mathbf{y}_{rs(real)}$ —Common-source small-signal reverse transfer conductance
- **z**_{if} —Intermediate-frequency impedance
- **z**_m -Modulator-frequency load impedance
- \mathbf{z}_{rf} -Radio-frequency impedance
- $\mathbf{Z}_{\theta|A(t)}$ —Junction-to-ambient transient thermal impedance
- $\mathbf{Z}_{\Theta|C(t)}$ —Junction-to-case transient thermal impedance
- $\boldsymbol{Z}_{\boldsymbol{\theta}(t)}$ —Transient thermal impedance
- \mathbf{z}_{v} —Video impedance
- zz —Regulator impedance, reference impedance (small-signal at Iz)
- \mathbf{z}_{zk} Regulator impedance, reference impedance (small-signal at \mathbf{I}_{ZK})
- z_{zm} —Regulator impedance, reference impedance (small-signal at I_{ZM})

PREFIX AND MANUFACTURER IDENTIFICATION

PREFIX MANUFACTURER PREFIX MANUFACTURER PREFIX MANUFACTURER MOC Motorola SLP Sanyo BA Rohm **Control Electronics** Motorola SN **Texas Instruments** MPS CEX TA Toshiha DAC National Semiconductor MRF Motorola TIL **Texas Instruments** FND Fairchild MU Motorola **General Instrument** TIP Motorola FRL. Litronix MV TLO Texas Instruments ICM Intersil NE Signetics National Semiconductor National Semiconductor **Texas** Instruments NSM TL LF Toshiba TLG LM National Semiconductor PCIM PC International American Micro Systems TLR Toshiba National Semiconductor S MA SAD VN Siliconix Motorola Reticon MC Xciton MI Motorola SE Signetics XC National Semiconductor. SEL Sanken MM Motorola or Teledyne SCS **Spectronics**

GENERIC PART NUMBER PREFIX CODE

AD	Analog To Digital	DA	Digital To Analog	LM	Linear Monolithic
AH	Analog Hybrid	DM	Digital Monolithic	MM	MOS Monolithic
AM	Analog Monolithic	LF	Linear FET	TBA	Linear Monolithic
CD	CMOS Digital	LH	Linear Hybrid		

ARCHER SEMICONDUCTOR REPLACEMENT GUIDE

DEVICE	276-	DEVICE	276-	DEVICE	276-	DEVICE	276-	DEVICE	276-	DEVICE	276-	DEVICE	276-
000000FR1	1104	000073230	1617	001-0163-02	565	001-044674-001	2009	004-03700	1104	0099203-005	1104	01-201-0	2009
000000FR2	1104	000073231	1617	001-0163-15	562	001-044676-001	1122	004-2	2020	0099203-007	1104	01-9011-5/2221-3	2009
000000FRI	1104	000073280	2017	001-01501-0	1123	001-044677-001	2016	005-02	1617	00200118	1104	01-9013-7/2221-3	2009
0000000MV4	1122	000073290	1617	001-02101-0	1617	001-21011	1617	005-1	2020	008010028	1122	01-9014-2/2221-3	2009
0000000515	1104	000073310	1617	001-02101-1	1617	001-223034	564	006-0000137A	2041	0031013029	2016	01-9016-4/2221-3	2009
0000001000	1123	000073320	2017	001-02102-0	1617	001-226030	1104	006-0000146	1801	0031013045	2009	01-9018-6/2221-3	2009
000000000000000000000000000000000000000	1104	0000/3332	1617	001-02103-0	1617	002-006500	1617	006-0004443	2035	0031013049	2009	01-30828	2058
0000000518	1104	000073333	2014	001-02104-0	1617	002-008300	2016	006-02	2023	0031013050	2023	01-30829	2009
000000DS-38	1104	000073361	2016	001-02106-0	1617	002-009500	1617	007-0051-00	2030	0031013052	2023	01-5/291	2020
000000DS38	1104	000073370	2009	001-02107-0	1617	002-009502-12	1617	007-0031-01	2030	0021014002	1104	01 117006	2010
000000SD1AB	1104	000073380	2017	001-02108-0	1617	002-009600	2016	007-0112-04	2020	0031014008	1104	01-349418	2010
000000SD1Y	1104	000073390	1617	001-02109-0	1617	002-009601	2016	007-0214-00	2035	0031014021	1123	01-349423	1617
000000SD46	1123	000073391	1617	001-02110-0	1617	002-009601-12	2016	007-0214-01	2035	0031014022	1122	01-349426	2058
0000015188	1123	0000DS410R	1122	001-02111-0	2009	002-009800	2023	007-214-00	2035	0031014024	1102	01-349634	2009
0000015334	562	0000FR202	1104	001-02111-1	1617	002-009800A	2023	007-1695001	1801	0031014029	1122	01-349681	2023
0000015990	1122	0000RS1542	1104	001-02113-2	1617	002-009900	1617	007-1695301	1802	0031014030	1104	01-472814	2009
0000010001	1104	0000SD-TAUF	1122	001-02113-3	1617	002-03	1617	007-1699301	1822	0063050118	1104	01-571591	2023
0000015330A	1101	000-04	101/	001-02113-4	101/	002-010300	2023	007-7450301C	2041	01-03945	2016	01-571751	2023
0000005-38	1114	00015188044	1123	001-02113-5	1017	002-010300A	2023	009-00	2055	01-0104/3	2027	01-5/1/94	2016
00000DS131	1104	0001S188FM	1123	001-02121-0	1617	002-010400	2023	0010	2009	01-010475	2023	01-3/1804	2009
00000DS410	1122	0002SC373	1617	001-02201-0	2023	002-010500A	2023	0020-0191	2009	01-010564	2023	01-571821	2009
00000SIB01	1104	00025C373W	2009	001-02303-0	565	002-010600	2030	0020-0191(.25094	15)	01-010628	2023	01-571941	1617
00000WZ090	562	0002SC458B	2009	001-02303-3	561	002-010800	1617		2009	01-010673	2023	01-572588	2023
0000-04	2009	0002SC458C	2009	001-02303-4	564	002-010900	2023	0020-0250	2009	01-010719	2023	01-572631	2055
0000-0141	2023	0002SC537F	2009	001-02405-0	1104	002-010900A	2023	0020-0330	2009	01-010733	2023	01-572774	2027
0000-0150	2023	00025C644Q	2016	001-02405-1	1104	002-011400	2016	0020-0332	2009	01-010844	2023	01-572784	2020
000015155	1100	00025C6445,R,Q	2016	001-02405-2	1104	002-011500	2016	0020-0351	2009	01-030372	2009	01-572791	2020
000015188	1102	0002507106	2009	001-02406-0	1114	002-012000	1617	0020-0521	2058	01-030373	2016	01-572811	2023
000015330A	565	0002507700	2009	001-02400-1	1114	002-012300	2027	0020-0531	2016	01-030380	2058	01-572814	2009
0000151555	1122	00025C828	2009	001-02603-0	1104	002-012400	2020	0020-0030	2009	01-030388	2009	01-3/2801	2020
0000151849	1104	0002SC828H	2009	001-02701-1	2035	002-012800	2023	0036-001	2023	01-030454	2009	01-690733	2009
0000152076	1122	0002SC828Q	2009	001-02702-0	2035	002-012800A	2023	0050-0011	1123	01-030458	2009	01-690945	2009
0000154460	1123	0002SC930D	2016	001-02703-0	2035	002-9501	2016	0050-0021	1123	01-030460	2009	01-691187	2058
00002SA550	2023	0002SC930E	2016	001-015010	1123	002-9502	2016	0050-0032	1123	01-030509	2009	01-691674	2016
00002SB435	2027	0002SC968P	2009	001-015011	1123	002-9502-12	2016	0050-0070	1122	01-030536	2009	01-700542	2023
0000258460	2016	00025C1023	2016	001-021010	2009	002-9601	2016	0050-0250	1122	01-030643	2055	01 ST-MPS9700D	2009
0000258908	2009	0002501026	2016	001-021011	2009	002-9601-12	2016	0050-0300	1122	01-030668	2016	01K-4.6E	565
000025C460	2009	00025010264	2016	001-021020	2009	002-9800-A	2023	0050-0301	1122	01-030682	2016	01K-5.0E	565
000025C460A	2016	00025010266	2016	001-021030	2009	002-12000	101/	0050-0302	1122	01-030710	2009	01K-5.2E	565
00002SC460B	2016	00025C1032	2016	001-021050	2009	0020233K1	2020	0051-0010	1104	01-030/11	2009	UIKS.4E	565
00002SC460C	2016	0002SC1032A	2016	001-021060	2009	0025C668D	2016	0051-0100	1104	01-030732	2015	01K6 55	561
00002SC461	2009	0002SC1032B	2016	001-021070	2016	002SC735-OY	2009	0051-0110	1104	01-030733	2023	01ST-MPS9700D	2009
00002SC535	2016	0002SC1032C	2016	001-021080	2009	002SC735OY	2009	0051-0130	1104	01-030734	2009	02-004558	038
000025C536	2009	0002SC1061	2020	001-021090	2009	002SC1061	2017	0051-0160	1104	01-030735	2009	02-2SC458LGC	2009
000025C537	2009	0002SC1061A	2020	001-021110	2030	002SC1209C	2009	0051-0290 1	104 N1	01-030763	2016	02-1001-1/2221-3	1123
000025C608	2010	00025010616	2020	001-021111	2030	002SC7350Y	2009	0051-0291 1	104 N2	01-030784	2058	02-1006-2/2221-3	1122
000025C668	2016	00023010810	2020	001-021130	2009	0025023581	2020	0051-0340	1104	01-030785	2058	02-1006-22221-3	1122
00002SC735	2009	000157GN	1123	001-021132	2009	003-00	2058	0054-0020	545	01-030626	2009	02-3002-2/2221-3	1104
00002SC772	2058	000188GN	1123	001-021133	2009	003-00200	1123	0054-0191	565	01-030829	2009	02-3002-22221-3	1104
00002SC828	2009	000546-1	1617	001-021134	2009	003-004200	1123	0054-0240	563	01-030930	2016	02-124422	705
000025C829	2016	000704	2009	001-021135	2009	003-005400	1123	0054-0240(,RD-12	EB)	01-030945	2009	02-257205	705
000025C838	2009	0001849	1104	001-021136	2016	003-006700	1123	A THE REPORT OF	563	01-031047	2016	02-437205	705
000025C858	2016	0001849R	1104	001-021172	2023	003-007500	1123	0054-0250	1122	01-031166	2009	02-455804	038
00002508704	1617	00023645	2009	001-021180	2041	003-009000	1123	0099-1030	1101	01-031173	2020	02 RECT-UG-1004	1173
00002568708	1617	00031013045	2009	001-021190	2030	003-009100	564	0079-1040	1122	01-031175	2009	02 ST-2SC1815Y	2009
00002SC870C	1617	00031014021	1123	001-021210	1617	003-009200	1123	001422	1102	01-031213	2009	02824.7	565
00002SC929	2016	00031014022	1122	001-021218	1617	003-009600	1123	003007	1104	01-031317	2016	02PTD 1004	1172
000025C930	2016	000WG1010	1122	001-021270-1	2041	003-009700	563	003008	1122	01-031318	2009	02ST-25C1815	2000
00002\$C945	2009	00	2016	001-021290	2030	003-009900	1104	003015	1104	01-031327	2016	025T-25C1815Y	2009
000025C968	1617	001-0000-00	1123	001-022010	2023	003-0	1067	003016	1123	01-031359	2009	02ST-2SC1875	2055
000025C1023	2009	001-00	1617	001-022020	2023	003-01	2058	003017	1122	01-031360	2016	02Z-6.2A	561
000025C1028	2016	001-007-00	1104	001-023030	565	003-02000	1123	003023	1102	01-031364	2009	02Z6.2A	561
00002SC1061	2020	001-0020-00	1123	001-023033	564	003-010000	563	003102	562	01-031674	2016	02Z6.2W	561
000025D235	2020	001-0020-0	1123	001-023034	565	004-00	101/	003111	562	01-031675	2009	0229.1	562
000071150	2023	001-0022-00	1123	001-024010	1104	004-00900	1122	003114	542	01-031685	2009	022-9.1A	562
000071151	2023	001-0072-00	1104	001-024020	1104	004-002000	1104	003307	1122	01-031687	2030	027124	562
000072020	1104	001-0077-00	1104	001-024030	1104	004-002700	1104	003449	2058	01-031688	2058	02Z12GR	563
000072050	1104	001-0081	1123	001-024050	1104	004-002800	1104	003460	2016	01-031815	2009	02Z15	564
000072090	1123	001-0082-00	561	001-024051	1104	004-003000	1104	003461	2016	01-031855	2058	02Z15A	564
000072150	1102	001-0095-00	1122	001-024052	1104	004-003300	1104	004567	1104	01-031906	2016	02Z62A	561
000072190	562	001-02	2022	001-024060	1143	004-003400	1104	004746	2023	01-031923	2058	03-0018-0	1104
000073070	2016	001-03	2023	001-024081	2000	004-003600	1104	004/63	1122	01-032057	2058	03-160	1123
000073080	2016	001-04	2023	001-024000	1100	004-003/00	1101	004/92	2016	01-032076	2009	03-460C	2016
000073090	1617	001-0101-01	562	001-026030	1122	004-004000	1114	0023645	2014	01-040234	2020	03-4018	2016
000073100	1617	001-0112-00	1122	001-026060	1122	004-004100	1104	0023828	1617	01-040313	2020	03-335A	1617
000073110	2030	001-0125-00	1122	001-027030	2035	004-009200	1123	0023829	2016	01-040389	2020	03-3016	1104
000073120	1617	001-0151-00	1122	001-044272-002	2009	004-03300	1104	0044028-014	1617	01-040476	2020	03-931051	1123
000073130	1617	001-0151-01	1122	001-044273-002	2030	004-03500	1104	0044028-14	1617	01-070030	2035	03-931601	1104
V9V070140	2036	001-0153-00	1104	001-044277-002	1104	004-03600	1104	0099201-325	562	01-0318145	2016	03-931609	1104

ALPHABETICAL/NUMERICAL INDEX

DIODES AND RECTIFIERS

Bridge Rectifiers—50V, 100V, 250V, 400V 5
Diode (General Purpose)
40V, 50V, 60V, 75V, 200V, 400V, 600V
1000V5
Diode (Zener)
5.1V, 6.2V, 9.1V, 12V, 15V5

INTEGRATED CIRCUITS

Digital (CMOS)

4001	NOR Gate (276-2401)
4011	NAND Gate (276-2411)
4013	"D" Flip-Flop (276-2413)
4017	Divider/Counter (276-2417)24
4049	Inverting Hex Buffer (276-2449)
4066	Bilateral Switch (276-2466)
UM3	482 Melody Generator (276-1797) 27

Digital (Memory)

4164 Dynamic RAM (276-2506)	
MSM2764RS 64KUV EPROM (276-1251)35	
TMS4256 256K Dynamic RAM (276-1252)36	
Digital (TTL)	
7400 NAND Gate (276-1801)39	
7404 Hex Inverter (276-1802)40	
7408 AND Gate (276-1822)41	
7447 Decoder/Driver (276-1805)	
7490 BCD Counter (276-1808)44	

FM RECEIVER

TDA7000 (276-1304)																				1	1	5
--------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---	---

Interface (Driver)

Interface (Receiver)

MC1489 Quad Line Receive	r (276-2521)48
--------------------------	----------------

LinCMOS (A to D Converter)

TLC548 A to D Converter (27	'6-1/96) 30
LinCMOS (Timer)	
TLC555 Timer (276-1718) .	

Linear (Audio)

TA7205P Power Amp (276-705)57	
TDA1520A (276-1305)	
383 Power Amp (276-703)55	
386 Power Amp (276-1731)	

Linear (Miscellaneous)

339 Quad Compa	rator (276-1712)					. 7	1
67 Tone Decode	r (276-1721)					. 7	2
909 LED Flasher	/Osc (276-1705)					.7	3

Linear (Op Amps)

324	Op Amp	(276-17	711)								. 64	
353	Op Amp	(276-17	715)								. 60	
741	Op Amp	(276-00)7).								. 62	
145	8 Op Am	p (276-0)38)								. 63	

Linear (Timer)

555	Timer (276-1723)							. 65	
556	Dual Timer (276-1728)							. 66	

Linear (Voltage Regulator)

317T Positive Regulator (276-1778)					. 67	
723 Adj. Volt Regulator (276-1740)					. 69	
7805 5 Volt Regulator (276-1770) .					. 70	
7812 12 Volt Regulator (276-1771)					. 70	
7815 15 Volt Regulator (276-1772)					.70	

MICROCOMPUTER (8-Bit)

CTS256AL2	Code	to	Sp	eecl	1	Ch	ip					
(276-178	36)									 	. '	77

MOS (CMOS)

SSI202 DTMF Receiver	(276-1303)		74
----------------------	------------	--	----

N-Channel ION Implant (Sound Generator)

AY-3-8910A Programmable Sound

N-Channel MOS (Audio)

SP0256 Speech Processor (276-1784)96

OPTOELECTRONIC DEVICES

Blinking LED (F336GD)(276-030)15
Blinking LED (F336HD)(276-036)15
Detector (Infrared Emitter)(276-142)20
Display (MAN74)(276-075)17
Display (B1001R)(276-081)15
Display (276-053)
Display (276-064)17
Driver (MOC3010)(276-134)16
Infrared Emitter (TIL906-1)(276-143)14
Photocell (276-116)
Phototransistor (TIL414)(276-145)19
Solar Cell (276-124) 20
Tri-Color Red/Green/Yellow (XC-5491)
(276-035)

LED CHART (Indicators)

Green SLP-236B (276-022)	13
Green SLP-235B (276-037)	13
Green (276-069)	13
Red PR5534S (276-018)	13
Red (276-026)	13
Red TLR-147 (276-033)	13
Red (276-041)	13
Red 369HHD (276-065)	13
Red SLA-591LT3 (276-066A)	13
Red SLP-888A (276-088)	13
Red (276-068)	13
Yellow SLP-236B (276-021)	13
Dual Color Red/Green R9-56 (276-025)	13

SPECIAL PURPOSE DEVICES

SCR-200V, 6A (276-1067)12	
SCR-400V, 6A (276-1020)12	
TRIAC 400V, 6A (276-1000)12	
VARISTOR ERZ-C14DK201U (276-570)11	
VARISTOR ERZ-C20DK201U (276-568)11	

SPECIAL TRANSISTORS

Field-Effect MPF102 (276-2062)						.7
Field-Effect 2N3819 (276-2035)						. 9
Power MOSFET BS170 (276-2074)						10
Power MOSEET IRE511 (276-2072)		3		5		7

TRANSISTORS (BIPOLAR)

General Purpose NPN-SIL (MPS2222A)6
General Purpose NPN-SIL (2N2222)6
General Purpose NPN-SIL (2N3904)6
General Purpose PNP-SIL (2N3906)6
Horiz. Defl. NPN-SIL (2SC1308)6
Power Amp/Switch PNP-SIL (MJ2955)6
Power Amp/Switch PNP-SIL (MJE34)6
Power Amp/Switch PNP-SIL (TIP31)6
Power Amp/Switch NPN-SIL (TIP120)6
Power Amp/Switch NPN-SIL (TIP3055)6
Power Amp/Switch NPN-SIL (2N3053)6
Power Amp/Switch NPN-SIL (2N3055)6
Switching PNP-SIL (MPS2907)6
Switching/Amp NPN-SIL (2N4401)6

N

A Division of Tandy Corporation Fort Worth, Texas 76102

PRINTED IN U.S.A.

de.