©2001-2005 Mineral Data Publishing, version 1

Crystal Data: Monoclinic. Point Group: 2/m. In hexagonal platelets, micalike, with forms $\{001\}, \{010\}, \{100\}, and \{101\}$. Twinning: Polysynthetic, $\parallel \{010\}$.

Physical Properties: Cleavage: Perfect on $\{010\}$. Hardness = 3–3.5 D(meas.) = 2.49 D(calc.) = 2.492

Optical Properties: Semitransparent. *Color:* Pale bluish green to bluish black. *Streak:* White. *Luster:* Vitreous, pearly on cleavages. *Optical Class:* Biaxial (–). *Orientation:* $X \wedge \{010\} = 14^{\circ}$. *Dispersion:* r < v, strong. $\alpha = 1.658$ $\beta = \text{n.d.}$ $\gamma = 1.714$ $2V(\text{meas.}) = 80^{\circ}-85^{\circ}$

Cell Data: Space Group: $P2_1/n$. a = 17.808(8) b = 5.132(3) c = 8.881(4) $\beta = 92.11(3)^{\circ}$ Z = 2

X-ray Powder Pattern: Kazakhstan.

4.46 (100), 8.91 (90), 7.85 (80), 5.02 (50), 1.973 (40), 3.287 (35), 2.957 (35)

Chemistry:		(1)	(2)		(1)	(2)
	V_2O_5	24.2	27.5	NiO	2.7	4.2
	V_2O_4	3.8		ZnO	0.5	7.6
	SiO_2	1.8		MgO	0.5	
	Al_2O_3	39.5	34.2	CaO	0.5	
	Fe_2O_3	trace		H_2O^+	25.4	
	V_2O_3	0.0		H_2O^-	0.5	
	FeO		0.3	H_2O		[26.2]
				Total	99.4	[100.0]

(1) Kazakhstan; several values are averages of two determinations. (2) Do.; by electron microprobe, H_2O by difference; corresponding to $(Zn_{0.57}Ni_{0.34}Fe_{0.02})_{\Sigma=0.93}Al_{4.09}V_{1.84}O_{20.50}H_{17.69}$.

Occurrence: In the oxidation zone of a vanadiferous clay-anthraxolite horizon.

Association: Mica, roscoelite (?).

Distribution: In several mines of the Kurumsak and Balasauskandyk districts, northwestern Kara-Tau Mountains, Kazakhstan.

Name: For ALuminum and VANadium in the composition.

Type Material: Mining Institute, St. Petersburg, 1249/2; A.E. Fersman Mineralogical Museum, Academy of Sciences, Moscow, Russia, 65614.

References: (1) Ankinovich, E.A. (1959) New vanadium minerals – satpaevite and al'vanite [alvanite]. Zap. Vses. Mineral. Obshch., 88, 157–164 (in Russian). (2) (1959) Amer. Mineral., 44, 1325–1326 (abs. ref. 1). (3) Pertlik, F. and P.J. Dunn (1990) Crystal structure of alvanite, $(Zn, Ni)Al_4(VO_3)_2(OH)_{12} \cdot 2H_2O$, the first example of an unbranched zweier-single chain vanadate in nature. Neues Jahrb. Mineral., Monatsh., 385–392. (4) Dunn, P.J., A.C. Roberts, and F. Pertlik (1990) Alvanite from Kazakhstan, U.S.S.R.: new crystallographic and chemical data. Mineral. Mag., 54, 609–611.