©2001-2005 Mineral Data Publishing, version 1

Crystal Data: Monoclinic. Point Group: 2/m. As bladed or platy crystals, to 5 mm, showing $\{110\}$, $\{011\}$, $\{101\}$, and $\{111\}$, flattened on $\{010\}$, elongated along [001]; in aggregates, to 1 cm.

Physical Properties: Cleavage: {010}, very good. Fracture: Uneven. Tenacity: Brittle but elastic. Hardness = 2 D(meas.) = 1.83(1) D(calc.) = 1.845 Soluble in H₂O, hydrolyzes in air, with sulfur evident in the residue.

Optical Properties: Transparent in thin crystals, translucent in aggregates. Color: Orange to yellow. Streak: Pale yellow. Luster: Vitreous, pearly on intergrowths of parallel plates. Optical Class: Biaxial (+). Pleochroism: Strong; X = deep yellow-green; Y = greenish yellow; Z = pale greenish yellow. Orientation: X = b; Y = a; $Z \land c = 30^{\circ}$. Absorption: X > Z > Y. $\alpha = 1.595(2)$ $\beta = 1.619(2)$ $\gamma = 1.697(3)$ 2V(meas.) = n.d. 2V(calc.) = 60°20'.

Cell Data: Space Group: $P2_1/c$. a = 8.45(1) b = 17.47(1) c = 8.24(1) $\beta = 119.5^{\circ}$ Z = 1

X-ray Powder Pattern: Chelyabinsk coal basin, Russia. 8.76 (10), 4.39 (10), 1.996 (7), 2.91 (6), 2.81 (5), 2.62 (5), 2.28 (5)

Chemistry:		(1)	(2)
	Fe	1.34	
	Ca	28.12	27.58
	Ο	[9.08]	12.20
	\mathbf{S}	19.56	
	$\mathbf{S}^{\mathbf{s}}$		6.11
	$\mathbf{S}^{\mathbf{p}}$		7.25
	$\mathbf{S}^{\mathbf{t}}$		6.20
	OH		9.46
	$\rm H_2O$	41.9	31.20
	Total	[100.00]	100.00

(1) Chelyabinsk coal basin, Russia; H₂O by TGA. (2) Analysis (1) after deduction of Fe as impurity, portlandite 1%, adsorbed H₂O 1%, recasting S as S^s = sulfide S, S^p = polysulfide S, S^t = thiosulfate S; then corresponding to $Ca(S_{2.63}^{p}S_{2.22}^{s})_{\Sigma=4.85} \cdot Ca(S_{2.25}^{t}O_{3.00}) \cdot Ca_{6.00}(OH)_{12.20} \cdot 20.14H_2O$.

Occurrence: Among the melt products of old, burning coal dumps.

Association: Siderite, pyrite, iron, sulfur, oldhamite, portlandite, periclase, troilite, pyrrhotite, fluorite.

Distribution: In the Chelyabinsk coal basin, Southern Ural Mountains, Russia.

Name: For Alfre Georgievich Bazhenov (1931–), geochemist and petrologist, and Lyudmila Fedorovna Bazhenova (1938–), analytical chemist, of the Il'menskii Preserve, Miass, Russia.

Type Material: Mining Institute, St. Petersburg, 1956/1; Il'menskii Preserve Museum, Miass, Russia, 5873–5875; A.E. Fersman Mineralogical Museum, Academy of Sciences, Moscow, Russia.

References: (1) Chesnokov, B.V., V.O. Polyakov, and A.F. Bushmakin (1987) Bazhenovite $CaS_5 \cdot CaS_2O_3 \cdot 6Ca(OH)_2 \cdot 20H_2O - a$ new mineral. Zap. Vses. Mineral. Obshch., 116, 737–743 (in Russian). (2) (1989) Amer. Mineral., 74, 500 (abs. ref. 1). (3) (1988) Mineral. Abs., 39, 495–496 (abs. ref. 1).