(c)2001-2005 Mineral Data Publishing, version 1

Crystal Data: Tetragonal. Point Group: $4/m \ 2/m \ 2/m$. In porous massive aggregates of submicroscopic particles; a few grains show square or rectangular outlines under the electron microscope.

Physical Properties: Hardness = \sim 7 D(meas.) = 5.5(1); 5.7 when corrected for stibiconite impurity. D(calc.) = 5.80

Optical Properties: Transparent to translucent. Color: Blue-gray to yellowish brown when in admixture with stibiconite; colorless in transmitted light. Streak: Pale gray. Optical Class: Uniaxial. n=1.855-1.915

Cell Data: Space Group: $P4_2/mnm$. a = 4.68 c = 9.21 Z = 2

X-ray Powder Pattern: El Antimonio, Mexico. 3.32 (100), 2.57 (90), 1.73 (90), 4.19 (70), 2.34 (50), 4.63 (40), 2.96 (40)

Chemistry:		(1)	(2)
	$\mathrm{Al_2O_3}$	0.08	
	Fe_2O_3	0.03	
	$\mathrm{Sb}_{2}\mathrm{O}_{5}$	89.05	90.37
	${ m MgO}$	6.65	7.43
	CaO	1.44	
	$\mathrm{H_{2}O^{+}}$	2.60	2.20
	$H_2^{-}O^{-}$	0.17	
	insol.	0.25	

Total

(1) La Fortuna mine, Sonora, Mexico; H_2O^+ by the Penfield method; known to be slightly contaminated with stibiconite, insoluble is quartz. (2) Do.; corrected for stibiconite impurity; then corresponding to $Mg_{0.65}Sb_{1.97}[O_{5.14}(OH)_{0.86}]_{\Sigma=6.00}$.

[100.00]

100.27

Mineral Group: Ferrotapiolite group.

Occurrence: In quartz veins in an oxidized antimony deposit.

Association: Stibiconite, quartz.

Distribution: In the La Fortuna and San Jose mines, El Antimonio, 27 km southwest of Agua Prieta, Sonora, Mexico.

Name: For Dr. Anders Byström (1916–1956), Swedish crystal chemist, who made a structural analysis of the synthetic compound.

Type Material: The Natural History Museum, London, England, 1951,300; National Museum of Natural History, Washington, D.C., USA, 106194.

References: (1) Mason, B. and C.J. Vitaliano (1952) Bystromite, magnesium antimonate, a new mineral. Amer. Mineral., 37, 53–57. (2) Byström, A., B. Hök, and B. Mason (1941) The crystal structure of zinc metantimonate and similar compounds. Arkiv Kemi, Mineral., Geol., 15B, 1–8.