©2001-2005 Mineral Data Publishing, version 1

Crystal Data: Tetragonal. *Point Group:* $\overline{4}2m$. Typically as rounded to irregular inclusions, to 1.3 mm, exsolved from bornite.

Physical Properties: Cleavage: Two imperfect at right angles suggested by fractures during hardness tests. Hardness = 3.5-4 VHN = n.d. D(meas.) = n.d. D(calc.) = 4.65 Magnetic.

Optical Properties: Opaque. *Color:* In polished section, brownish orange. *Pleochroism:* Strong, orange to brown with slight orange tint. *Anisotropism:* Very strong, from bright straw-yellow to bright royal blue to dark blue.

 $\begin{array}{l} {\rm R_1-R_2:} \ (400) \ 15.0-19.0, \ (420) \ 16.0-20.0, \ (440) \ 17.1-21.0, \ (460) \ 18.6-22.0, \ (480) \ 20.3-23.1, \ (500) \ 22.5-24.2, \ (520) \ 25.0-25.3, \ (540) \ 28.1-26.4, \ (560) \ 31.2-27.4, \ (580) \ 33.8-28.5, \ (600) \ 36.4-29.6, \ (620) \ 38.5-30.8, \ (640) \ 39.9-32.0, \ (660) \ 40.9-33.1, \ (680) \ 41.4-33.8, \ (700) \ 41.6-34.4 \end{array}$

Cell Data: Space Group: $P\overline{4}m2$. a = 7.603(2) c = 5.358(1) Z = 1

X-ray Powder Pattern: Mt. Lyell, Tasmania, Australia. 3.09 (100), 1.895 (80), 1.618 (60), 2.680 (50), 1.063 (50), 1.232 (30), 5.37 (20)

Chemistry:	(1)	(2)	(3)		(1)	(2)	(3)
Cu	44.3	45.0	43.91	Sn	10.4	11.8	13.67
Fe	12.5	11.8	12.87	\mathbf{S}	33.0	30.3	29.55
Zn		< 0.1		Total	100.2	98.9	100.00

(1) North Lyell mine, Australia; by electron microprobe, corresponds to $Cu_{5,42}Fe_{1,74}Sn_{0.68}S_{8,00}$.

(2) Tingha, Australia; by electron microscope, corresponds to $Cu_{6.00}Fe_{1.79}Sn_{0.84}S_{8.00}$.

(3) $Cu_6Fe_2SnS_8$.

Occurrence: In massive to disseminated hydrothermal copper ores within highly altered volcanic rocks; in skarns; disseminated in altered granites; rare in copper porphyry deposits.

Association: Bornite, pyrite, chalcopyrite, chalcocite, digenite, idaite, stannite, stannoidite, pyrrhotite, pentlandite, tetrahedrite-tennantite, enargite, luzonite-famatinite, kiddcreekite, mohite, bismuth, galena, sphalerite.

Distribution: In Australia, from the North Lyell [TL] and Crown Lyell mines, Mt. Lyell district, Queenstown, Tasmania; and in New South Wales, at the Royal George mine, near Tingha, New England district [TL]. In Bolivia, from Vila Apacheta. In Peru, at the Colquijirca mine, Junín. From the New Brunswick Tin Mines deposit, New Brunswick; the Maggie porphyry copper deposit, 15 km north of Ashcroft, British Columbia; and at the Kidd Creek mine, near Timmins, Ontario, Canada. From Bisbee, Cochise Co., Arizona, USA. At Neves-Corvo, Portugal. From Chizeuil, Saône-et-Loire, France. At Tsumeb, Namibia. In the Khayragatsch and Kochbulak gold deposits, Chatkal-Kuramin Mountains, eastern Uzbekistan. At the Akenobe, Tada, and Ikuno mines, Hyogo Prefecture; the Ashio mine, Tochigi Prefecture; the Fukoku mine, Kyoto Prefecture; and the Konjo mine, Okayama Prefecture, Japan. In the Ulsan mine, Kyongsang Province, South Korea. Now known from a number of other localities.

Name: Honoring Sir Douglas Mawson (1882–1958), noted English-Australian geologist and Antarctic explorer.

Type Material: The Australian Museum, Sydney, Australia, D48487; The Natural History Museum, London, England, 1965,347; Harvard University, Cambridge, Massachusetts, USA.

References: (1) Markham, N.L. and L.J. Lawrence (1965) Mawsonite, a new copper–iron–tin sulfide from Mt. Lyell, Tasmania and Tingha, New South Wales. Amer. Mineral., 50, 900–908. (2) Szymanski, J.T. (1976) The crystal structure of mawsonite, Cu₆Fe₂SnS₈. Can. Mineral., 14, 529–535. (3) Criddle, A.J. and C.J. Stanley, Eds. (1993) Quantitative data file for ore minerals, 3rd ed. Chapman & Hall, London, 360.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Mineral Data Publishing.