Intégrales indéfinies immédiates
∫ | dx = x + c |
∫ | xndx = | + c (n ≠ -1) |
∫ | dx = | + c |
∫ | x-1dx = | ∫ | dx = ln x + c |
∫ | axdx = | + c = ax loga e + c (a > 0 et a ≠ 1) |
∫ | exdx = ex + c |
∫ | sin x dx = -cos x + c |
∫ | cos x dx = sin x + c |
∫ | dx = tan x + c |
∫ | dx = -cotan x + c |
∫ | dx = arcsin x + c (|x| < 1) |
∫ | dx = arctan x + c |
∫ | sinh x dx = cosh x + c |
∫ | cosh x dx = sinhx + c |
∫ | dx = tanh x + c |
∫ | dx = -cotanh x + c (x ≠ 0) |
∫ | dx = ln |x + | | + c = arcsinh x + c |
∫ | dx = ln |x + | | + c = arccosh x + c (|x| > 1) |
∫ | dx = | = arctanh x + c (|x| < 1) |
∫ | dx = | = -arccotanh x + c (|x| > 1) |