Circle, Square and Rectangle formula

Mathématique

Circle

d = 2r     r = d/2    

C = 2πr     C = πd     C = 2√πA

A = πr²     A = πd² / 4     A = C² / 4π

Square

 Diagonal of the square formula from
diameter diameter  length
side area  perimeter circumradius of the circumcircle the inradius of the incircle of the segment l
d = a·√2 d = √2A d = P / 2√2 d = 2R d = Dc d = 2r√2 d = Di√2 d = l  (2√10/5)
Perimeter of a square formulas from
diameter diameter  length
side area diagonal circumradius of the circumcircle the inradius of the incircle of the segment l
P = 4a P = 4√A P = 2d√2 P = 4R√2 P = 2Dc√2 P = 8r P = 4Di P = l (8√5)
Area of a square formulas from
diameter diameter  length
side perimeter diagonal circumradius of the circumcircle the inradius of the incircle of the segment l
A = a² A = P²/16 A = d² / 2 A = 2R² A = Dc² / 2 A = 4r² A = Di² A = l ²(16√5)
Circumradius of a square formulas from
diameter diameter  length
side perimeter diagonal area of the circumcircle the inradius of the incircle of the segment l
R = a √2 / 2 R = P / 4√2 R = d / 2 R = √2A / 2 R =Dc / 2 R = r √2 R = Di √2 / 2 R = l  √10/5
inscribed circle of a square formulas from
diameter diameter  length
side perimeter diagonal area of the circumcircle circumradius of the incircle of the segment l
r = a / 2 r = P / 8 r = d / 2√2 r = √A / 2 r = Dc / 2√2 r = R / √2 r = Di / 2 r = l / √5

Rectangle

Rectangle sides from
diagonal area perimeter
and rectangle side and rectangle side and rectangle side  diagonal diagonal
a = √(d² - b²) a = A / b a = (P - 2b) / 2 a = d sinα a = d sin β / 2
b = √(d² - a²) b = A / a b = (P - 2a) / 2 b = d cosα b = d cos β / 2
Diagonal of a rectangle from
radius of the diameter of the 
 area perimeter  escribed circle  escribed circle
rectangle sides and rectangle side and rectangle side  (excircle)  (excircle)
d = √(a² + b²) d = √(A² + a4) / a d = √(P² - 4Pa + 8a²) / 2 d = 2R d = Dc
d = √(A² + b4) / b d = √(P² - 4Pb + 8b²) / 2
sine of the angle that adjacent cosine of the angle that adjacent
 to the diagonal  to the diagonal sine of the acute angle between
and the opposite side of the angle and the opposite side of the angle  the diagonals and the area
d = a / sin α d = c / cos α d = √2A / sin β
Perimeter of a rectangle from
radius of the diameter of the 
 area diagonal  escribed circle  escribed circle
rectangle sides and rectangle side and rectangle side  (excircle)  (excircle)
P = 2a + 2b P = (2A + 2a²) / a P = 2(a + √(d² - a²)) P = 2(a + √(4R² - a²)) P = 2(a + √(Dc² - a²))
P = (2A + 2b²) / b P = 2(b + √(d² - b²)) P = 2(b + √(4R² - b²)) P = 2(b + √(Dc² - b²))
Area of a rectangle
radius of the diameter of the 
perimeter diagonal  escribed circle  escribed circle
rectangle sides and rectangle side and rectangle side  (excircle)  (excircle)
A = a · b A = (Pa - 2a²) / 2 A = a√(d² - a²) A = a√(4R² - a²) A = a√(Dc² - a²)
A = (Pb - 2b²) / 2 A = b√(d² - b²) A = b√(4R² -b²) A = b√(Dc² - b²)
sine of the acute angle between
 the diagonals and the area
A = d² · sin β / 2 
An angle between the diagonal and rectangle side
sin α = a / d cos α = b / d α = β / 2
An angle between the rectangle diagonals
β = 2α sin β = 2A / d²
Inradius
Ri = a / 2
Circumradius of a rectangle  from
diameter of the 
perimeter  area  escribed circle
rectangle sides and rectangle side and rectangle side diagonal  (excircle)
R = √(a² + b² ) / 2 R = √(P² - 4Pa + 8a²) / 4 R = √(AS² + a4) / 2a R = d / 2 R = Dc / 2
R = √(P² - 4Pb + 8b²) / 4 R = √(AS² + b4) / ba
sine of the angle that adjacent cosine of the angle that adjacent
 to the diagonal  to the diagonal sine of the acute angle between
and the opposite side of the angle and the opposite side of the angle  the diagonals and the area
R = a / 2sin α R = b / 2cos α R = √(2A / sin β) / 2

 

 

 

 

 

 

 

Recherche personnalisée