Regular Polygon formula
| 
		Trigon n = 3 x = 60° y= 120°  | 
		
		Tetragon n = 4 x = 90° y= 90°  | 
		
		Pentagon n = 5 x = 108° y= 72°  | 
	
		![]()  | 
		
		![]()  | 
		
		![]()  | 
	
| 
		Hexagon n = 6 x = 120° y= 60°  | 
		
		Heptagon n = 7 x = 128,57° y= 51,43°  | 
		
		Octagon n = 8 x = 135° y= 45°  | 
	
		![]()  | 
		
		![]()  | 
		
		![]()  | 
	
| 
		Nonagon n = 9 x = 140° y= 40°  | 
		
		Decagon n = 10 x = 144° y= 36°  | 
		
		Undecagon n = 11 x = 144,27° y= 32,73°  | 
	
		![]()  | 
		
		![]()  | 
		
		![]()  | 
	
| 
		Dodecagon n = 12 x = 150° y= 30°  | 
		
		Tridecagon n = 13 x = 152,31° y= 27,69°  | 
		
		Tetradecagon n = 14 x = 154,29° y= 25,71°  | 
	
		![]()  | 
		
		![]()  | 
		
		![]()  | 
	
		![]()  | 
	||
| n = number of sides | ||
| 
		Side Length a  a = 2r tan(π/n) a = 2R sin(π/n)  | 
		
		Perimeter P  P = na  | 
		
		Area A  A = (1/4)naČ cot(π/n) A = nr tan(π/n)  | 
	
| 
		 Angles x + y = 180°  | 
		
		Interior Angle x  x = (n-2)π / n radians x = (n-2)/n) x 180° degrees x = 180 - y  | 
		
		Exterior Angle y  y = (2π / n) radians y = (360° / n) degrees y = 180 - x  | 
	
| 
		Inradius r (apothem)  r = (1/2)a cot(π/n) r = R cos(π/n)  | 
		
		Circumradius R  R = (1/2) a csc(π/n) R = r sec(π/n)  | 
		|